On the magnetism, thermal- and electrical transport of SrMoO2N

被引:22
|
作者
Logvinovich, D. [1 ]
Hejtmanek, J. [2 ]
Knizek, K. [2 ]
Marysko, M. [2 ]
Homazava, N. [3 ]
Tomes, P. [2 ]
Aguiar, R. [4 ]
Ebbinghaus, S. G. [5 ]
Reller, A. [4 ]
Weidenkaff, A. [1 ]
机构
[1] EMPA, Solid State Chem & Catalysis, CH-8600 Dubendorf, Switzerland
[2] Acad Sci Czech Republ, Inst Phys, CZ-15263 Prague 6, Czech Republic
[3] EMPA, Analyt Chem, CH-8600 Dubendorf, Switzerland
[4] Univ Augsburg, D-80159 Augsburg, Germany
[5] Univ Halle Wittenberg, D-06120 Halle, Saale, Germany
关键词
25;
D O I
10.1063/1.3067755
中图分类号
O59 [应用物理学];
学科分类号
摘要
Physical properties of perovskite-type SrMoO2N phases were studied in the temperature range of 3 K < T < 300 K. The oxynitride crystallizes in a cubic unit cell (space group Pm (3) over barm) as revealed by neutron and x-ray diffraction measurements. The polycrystalline material shows weakly temperature dependent electrical resistivity and low glasslike heat conductivity, both reflecting the unusual strength of the scattering processes in the charge carrier transport. Based on the positive Seebeck coefficient values, holes are identified as the dominating charge carriers in SrMoO2N. Down to 150 K, the magnetic susceptibility is temperature independent and explained as enhanced Pauli paramagnetism (x similar to 10(-4) emu mol(-1) Oe(-1)). The absolute value of its magnetic susceptibility is, however, half of that for SrMoO3. Simultaneously, the lower Sommerfeld coefficient gamma measured for the oxynitride confirms the lower density of states near the Fermi level for SrMoO2N compared to SrMoO3. At low temperature, both SrMoO2N and SrMoO3 show Curie paramagnetism superimposed to the temperature independent Pauli paramagnetism and an anomaly at T=54 K. This anomaly is attributed to the presence of molecular oxygen in the material, while the Curie upturn is likely associated with a small amount of paramagnetic centers. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3067755]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] MAGNETISM AND ELECTRICAL TRANSPORT IN KONDO LATTICES
    GREWE, N
    PRUSCHKE, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 60 (2-4): : 311 - 322
  • [2] Dual Thermal-/Electrical-Responsive Luminescent 'Smart' Window
    Timmermans, Gilles H.
    Douma, Robin F.
    Lin, Jianbin
    Debije, Michael G.
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [3] Supercapacitor thermal- and electrical-behaviour modelling using ANN
    Marie-Francoise, JN
    Gualous, H
    Berthon, A
    IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2006, 153 (02): : 255 - 262
  • [4] Electrical transport and magnetism in CeFe2Si2 single crystal
    Mihalik, M
    Mihalik, M
    Sechovsky, V
    PHYSICA B-CONDENSED MATTER, 2005, 359 : 163 - 165
  • [5] Thermal transport, magnetism, and quantum oscillations in Weyl semimetal BaMnSb2
    Huang, Silu
    Xing, Lingyi
    Chapai, Ramakanta
    Nepal, Roshan
    Jin, Rongying
    PHYSICAL REVIEW MATERIALS, 2020, 4 (06):
  • [6] A study of the thermal-, electrical- and mechanical influence on degradation in an aluminum-pad structure
    Yu, X
    Weide, K
    MICROELECTRONICS AND RELIABILITY, 1997, 37 (10-11): : 1545 - 1548
  • [7] Magnetism, electrical and thermal transport in R2Ni5C3 (R = La-Nd, Sm, Gd, Tb)
    Levytskyi, Volodymyr
    Babizhetskyy, Volodymyr
    Isnard, Olivier
    Gumeniuk, Roman
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 969
  • [8] Electrical and Thermal Transport Properties of PdTe2 Nanofilm
    Miao, Ting-Ting
    Xiang, Meng-Xian
    Li, Da-Wei
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (12): : 3041 - 3045
  • [9] Thermal and electrical transport properties of ordered FeAl2
    Lue, CS
    Kuo, YK
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (06) : 877 - 882
  • [10] Synergistically optimizing electrical and thermal transport properties of n-type PbSe
    Qian, Xin
    Xiao, Yu
    Chang, Cheng
    Zheng, Lei
    Zhao, Lidong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2018, 28 (03) : 275 - 280