Precisely Controlled Multidimensional Covalent Frameworks: Polymerization of Supramolecular Colloids

被引:16
|
作者
Li, Yongguang [1 ,2 ]
Wu, Shanshan [1 ,2 ]
Zhang, Lingling [1 ,2 ]
Xu, Xin [1 ,2 ]
Fang, Yajun [1 ,2 ]
Yi, Juzhen [1 ,2 ]
Kim, Jehan [3 ]
Shen, Bowen [4 ]
Lee, Myongsoo [4 ]
Huang, Liping [1 ,2 ]
Zhang, Liwei [1 ,2 ]
Bao, Junhui [1 ,2 ]
Ji, Hongbing [1 ,2 ]
Huang, Zhegang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, Fine Chem Ind Res Inst, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, PCFM, LIFM Lab, Guangzhou 510275, Guangdong, Peoples R China
[3] Postech, Pohang Accelerator Lab, Pohang, Gyeongbuk, South Korea
[4] Fudan Univ, Dept Chem, Shanghai 200438, Peoples R China
基金
美国国家科学基金会;
关键词
colloids; covalent interactions; covalent organic frameworks; nanostructures; polymerization; ORGANIC FRAMEWORKS; REMOVAL; ADSORPTION; NANOSHEETS; NANOTUBES;
D O I
10.1002/anie.202010306
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rapid and selective removal of micropollutants from water is important for the reuse of water resources. Despite hollow frameworks with specific functionalized porous walls for the selective adsorption based on a series of interactions, tailoring a stable shape of nanometer- and micrometer-sized architectures for the removal of specific pollutants remains a challenge. Here, exactly controlled sheets, tubes, and spherical frameworks were presented from the crosslinking of supramolecular colloids in polar solvents. The frameworks strongly depended on the architecture of original supramolecular colloids. As the entropy of colloids increased, the initial laminar framework rolled up into hollow tubules, and then further curled into hollow spheres. These shape-persistent frameworks showed unprecedented selectivity as well as specific recognition for the shape of pollutants, thus contributing to efficient pollutant separation.
引用
收藏
页码:21525 / 21529
页数:5
相关论文
共 50 条
  • [1] Covalent Organic Frameworks as a Platform for Multidimensional Polymerization
    Bisbey, Ryan P.
    Dichtel, William R.
    ACS CENTRAL SCIENCE, 2017, 3 (06) : 533 - 543
  • [2] Concurrent Covalent and Supramolecular Polymerization
    Hou, Xisen
    Ke, Chenfeng
    Zhou, Yu
    Xie, Zhuang
    Alngadh, Ahmed
    Keane, Denis T.
    Nassar, Majed S.
    Botros, Youssry Y.
    Mirkin, Chad A.
    Stoddart, J. Fraser
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (35) : 12301 - 12306
  • [3] Concurrent covalent and supramolecular polymerization
    Hou, Xisen
    Ke, Chenfeng
    Stoddart, J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [4] Covalent organic frameworks form processable colloids
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2017, 95 (04) : 8 - 8
  • [5] Controlled supramolecular polymerization
    Zhang, Xi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [6] Ring-opening supramolecular polymerization controlled by orthogonal non-covalent interactions
    Xiao, Tangxin
    Zhong, Weiwei
    Qi, Lijie
    Gu, Jiande
    Feng, Xuejun
    Yin, Yue
    Li, Zheng-Yi
    Sun, Xiao-Qiang
    Cheng, Ming
    Wang, Leyong
    POLYMER CHEMISTRY, 2019, 10 (24) : 3342 - 3350
  • [7] Syntheses and applications of concave and convex colloids with precisely controlled shapes
    Cheng, Zhifeng
    Luo, Fuhua
    Zhang, Zexin
    Ma, Yu-qiang
    SOFT MATTER, 2013, 9 (47) : 11392 - 11397
  • [8] Covalent Organic Frameworks and Supramolecular Nano-Synthesis
    Dey, Kaushik
    Mohata, Shibani
    Banerjee, Rahul
    ACS NANO, 2021, 15 (08) : 12723 - 12740
  • [9] Controlled supramolecular polymerization of π-systems
    Ghosh, Goutam
    Dey, Pradip
    Ghosh, Suhrit
    CHEMICAL COMMUNICATIONS, 2020, 56 (50) : 6757 - 6769
  • [10] Temporally Controlled Supramolecular Polymerization
    Dhiman, Shikha
    George, Subi J.
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2018, 91 (04) : 687 - 699