Comparing parametric and nonparametric methods for detecting phase synchronization in EEG

被引:19
|
作者
Gordon, S. M. [1 ]
Franaszczuk, P. J. [2 ]
Hairston, W. D. [2 ]
Vindiola, M. [3 ,4 ]
McDowell, K. [2 ]
机构
[1] DCS Corp, Alexandria, VA 22310 USA
[2] USA, Human Res & Engn Directorate, Res Lab, Aberdeen Proving Ground, MD 21005 USA
[3] DRC High Performance Technol Grp, Reston, VA 20190 USA
[4] Computat & Informat Sci Directorate, Aberdeen Proving Ground, MD 21005 USA
关键词
Phase synchronization; Autoregressive modeling; EEG; VOLUME-CONDUCTION; DYNAMICS; MODEL; ARTIFACTS; INDEX;
D O I
10.1016/j.jneumeth.2012.10.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Detecting significant periods of phase synchronization in EEG recordings is a non-trivial task that is made especially difficult when considering the effects of volume conduction and common sources. In addition, EEG signals are often confounded by non-neural signals, such as artifacts arising from muscle activity or external electrical devices. A variety of phase synchronization analysis methods have been developed with each offering a different approach for dealing with these confounds. We investigate the use of a parametric estimation of the time-frequency transform as a means of improving the detection capability for a range of phase analysis methods. We argue that such an approach offers numerous benefits over using standard nonparametric approaches. We then demonstrate the utility of our technique using both simulated and actual EEG data by showing that the derived phase synchronization estimates are more robust to noise and volume conduction effects. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [1] Parametric and nonparametric methods for comparing groups
    Vargha, A
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2000, 35 (3-4) : 280 - 280
  • [2] Parametric and nonparametric population methods
    Proost, Johannes H.
    Eleveld, Douglas J.
    [J]. CLINICAL PHARMACOKINETICS, 2006, 45 (08) : 851 - 852
  • [3] Parametric and Nonparametric Population Methods
    Johannes H. Proost
    Douglas J. Eleveld
    [J]. Clinical Pharmacokinetics, 2006, 45 : 851 - 852
  • [4] Spectrum Estimation of Odor EEG Responses with Parametric-Nonparametric Spectral Analysis Methods
    Seker, Mesut
    Akin, Mehmet
    Ozerdem, Mehmet Sirac
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [5] Mass-Radius Relationship for M Dwarf Exoplanets: Comparing Nonparametric and Parametric Methods
    Kanodia, Shubham
    Wolfgang, Angie
    Stefansson, Gudmundur K.
    Ning, Bo
    Mahadevan, Suvrath
    [J]. ASTROPHYSICAL JOURNAL, 2019, 882 (01):
  • [6] COMPARING NONPARAMETRIC VERSUS PARAMETRIC REGRESSION FITS
    HARDLE, W
    MAMMEN, E
    [J]. ANNALS OF STATISTICS, 1993, 21 (04): : 1926 - 1947
  • [7] Nonparametric and parametric methods of spectral analysis
    Zhao, Hangfang
    Gui, Lin
    [J]. 2ND FRANCO-CHINESE ACOUSTIC CONFERENCE (FCAC 2018), 2019, 283
  • [8] COMPARISON OF NONPARAMETRIC AND PARAMETRIC TIME-VARYING METHODS FOR QUANTIFYING PHASE SYNCHRONY
    Mutlu, Ali Yener
    Aviyente, Selin
    [J]. 2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 1991 - 1995
  • [9] Comparing methods for multivariate nonparametric regression
    Banks, DL
    Olszewski, RT
    Maxion, RA
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (02) : 541 - 571
  • [10] Comparing Parametric, Nonparametric, and Semiparametric Estimators: The Weibull Trials
    Cole, Stephen R.
    Edwards, Jessie K.
    Breskin, Alexander
    Hudgens, Michael G.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (08) : 1643 - 1651