Tri-cubic polynomial natural spline interpolation for scattered data

被引:5
|
作者
Xu, Yingxiang [1 ,2 ]
Yu, Gaohang [3 ]
Guan, Lutai [4 ]
机构
[1] Sun Yat Sen Univ, Xinhua Coll, Guangzhou 510520, Guangdong, Peoples R China
[2] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[3] Gannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Peoples R China
[4] Sun Yat Sen Univ, Dept Sci Computat & Comp Applicat, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Scattered data; Interpolation; Tri-cubic polynomial; Natural spline;
D O I
10.1007/s10092-011-0048-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an interpolation problem for 3D scattered data defined on a rectangular parallelepiped with natural boundary conditions is considered. By using spline function theory in Hilbert space, we discuss the existence, uniqueness and characterization of the solution of the interpolation problem as well as its convergence. We show that the solution can be constructed in a simple way without using reproducing kernel semi-Hilbert space theory. Moreover, the solution can be written as the sum of tri-linear polynomials and piecewise tri-cubic polynomials and its coefficients can be determined by solving a positive semi-definite linear system. Numerical examples are presented to illustrate the proposed approach.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [1] Tri-cubic polynomial natural spline interpolation for scattered data
    Yingxiang Xu
    Gaohang Yu
    Lutai Guan
    Calcolo, 2012, 49 : 127 - 148
  • [2] BIVARIATE POLYNOMIAL NATURAL SPLINE INTERPOLATION TO SCATTERED DATA
    LI, YS
    GUAN, LT
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1990, 8 (02): : 135 - 146
  • [3] Cubic polynomial interpolation of scattered data points
    Zhang, Cai-Ming
    Sun, De-Fa
    Wang, Jia-Ye
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design & Computer Graphics, 1998, 10 (05): : 416 - 424
  • [4] Bivariate polynomial natural spline interpolation algorithms with local basis for scattered data
    Guan, LT
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2003, 5 (01) : 77 - 101
  • [6] Cubic Polynomial as Alternatives Cubic Spline Interpolation
    Nazren, A. R. A.
    Yaakob, Shahrul Nizam
    Ngadiran, R.
    Wafi, N. M.
    Hisham, M. B.
    ADVANCED SCIENCE LETTERS, 2017, 23 (06) : 5069 - 5072
  • [7] Interpolation for space scattered data by bicubic polynomial natural splines
    Department of Scientific Computing and Computer Application, Sun Yat-sen University, Guangzhou 510275, China
    不详
    Zhongshan Daxue Xuebao, 2008, 5 (1-4):
  • [8] NATURAL CUBIC AND BICUBIC SPLINE INTERPOLATION
    HALL, CA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (06) : 1055 - 1060
  • [9] Lobachevsky spline functions and interpolation to scattered data
    Giampietro Allasia
    Roberto Cavoretto
    Alessandra De Rossi
    Computational and Applied Mathematics, 2013, 32 : 71 - 87
  • [10] Lobachevsky spline functions and interpolation to scattered data
    Allasia, Giampietro
    Cavoretto, Roberto
    De Rossi, Alessandra
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 71 - 87