Prediction of steady-state flow of real gases in randomly heterogeneous porous media

被引:5
|
作者
Tartakovsky, DM [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Geoanal Grp, Los Alamos, NM 87545 USA
来源
PHYSICA D | 1999年 / 133卷 / 1-4期
关键词
gas flow; porous media; stochastic;
D O I
10.1016/S0167-2789(99)00078-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider steady-state flow of real gases through bounded, randomly heterogeneous porous media. Such how is described by a nonlinear partial differential equation with the random coefficient (medium's permeability) and source terms subject to randomly prescribed boundary conditions. Prior to applying stochastic analysis, the problem is linearized by means of the Kirchhoff transformation which allows us to obtain the exact expressions for an effective (upscaled) gas permeability. In particular, for one-, two-, and three-dimensional mean uniform flows in infinite, statistically homogeneous and isotropic domains the resulting effective permeability is given by harmonic, geometric, and arithmetic averages, respectively. The influence of statistical anisotropy of the random permeability field and domain' s boundaries on the effective gas permeability is also investigated. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 50 条
  • [1] Steady-State Source Flow in Heterogeneous Porous Media
    Peter Indelman
    [J]. Transport in Porous Media, 2001, 45 : 105 - 127
  • [2] Steady-state source flow in heterogeneous porous media
    Indelman, P
    [J]. TRANSPORT IN POROUS MEDIA, 2001, 45 (01) : 105 - 127
  • [3] On the steady-state flow of an incompressible fluid through a randomly perforated porous medium
    Wright, S
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 146 (02) : 261 - 286
  • [4] Red Noise in Steady-State Multiphase Flow in Porous Media
    Spurin, Catherine
    Rucker, Maja
    Moura, Marcel
    Bultreys, Tom
    Garfi, Gaetano
    Berg, Steffen
    Blunt, Martin J.
    Krevor, Samuel
    [J]. WATER RESOURCES RESEARCH, 2022, 58 (07)
  • [5] Inverse stochastic moment analysis of steady state flow in randomly heterogeneous media
    Hernandez, A. F.
    Neuman, S. P.
    Guadagnini, A.
    Carrera, J.
    [J]. WATER RESOURCES RESEARCH, 2006, 42 (05)
  • [6] FLOW OF REAL GASES IN POROUS MEDIA
    CLEGG, MW
    [J]. JOURNAL OF PETROLEUM TECHNOLOGY, 1968, 20 (09): : 988 - &
  • [7] Steady-State Transitions in Ordered Porous Media
    T. O. M. Forslund
    I. A. S. Larsson
    J. G. I. Hellström
    T. S. Lundström
    [J]. Transport in Porous Media, 2023, 149 : 551 - 577
  • [8] Steady-State Transitions in Ordered Porous Media
    Forslund, T. O. M.
    Larsson, I. A. S.
    Hellstrom, J. G. I.
    Lundstrom, T. S.
    [J]. TRANSPORT IN POROUS MEDIA, 2023, 149 (02) : 551 - 577
  • [9] IDENTIFICATION OF A STEADY-STATE FLOW IN POROUS MEDIA USING ARTIFICIAL NEURAL NETWORKS
    Lefik, Marek J.
    Boso, Daniela P.
    Schrefler, Bernhard A.
    [J]. PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2012, VOL 1, 2012, : 89 - 95
  • [10] Cluster evolution in steady-state two-phase flow in porous media
    Ramstad, T
    Hansen, A
    [J]. PHYSICAL REVIEW E, 2006, 73 (02):