Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries

被引:48
|
作者
Su, Chi-Cheung [1 ]
He, Meinan [1 ]
Shi, Jiayan [1 ,3 ]
Amine, Rachid [2 ]
Zhang, Jian [4 ]
Amine, Khalil [1 ,5 ,6 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[3] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Program Mat Sci & Engn, Riverside, CA 92521 USA
[5] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
[6] Imam Abdulrahman Bin Faisal Univ IAU, IRMC, Dammam 34212, Saudi Arabia
基金
美国国家科学基金会;
关键词
anode stabilization; electrolyte solvation; lithium-metal batteries; solid-electrolyte interphase; solvation numbers; FLUOROETHYLENE CARBONATE; ANODES; IONS;
D O I
10.1002/anie.202008081
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium-metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium-metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid-electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be >= 1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.
引用
收藏
页码:18229 / 18233
页数:5
相关论文
共 50 条
  • [1] Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries (vol 59, pg 18229, 2020)
    Su, Chi-Cheung
    He, Meinan
    Shi, Jiayan
    Amine, Rachid
    Zhang, Jian
    Amine, Khalil
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (24) : 13140 - 13140
  • [2] Artificial Solid-Electrolyte Interphase for Lithium Metal Batteries
    Kang, Danmiao
    Xiao, Muye
    Lemmon, John P.
    [J]. BATTERIES & SUPERCAPS, 2021, 4 (03) : 445 - 455
  • [3] Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
    Cheng, Xin-Bing
    Yan, Chong
    Chen, Xiang
    Guan, Chao
    Huang, Jia-Qi
    Peng, Hong-Jie
    Zhang, Rui
    Yang, Shu-Ting
    Zhang, Qiang
    [J]. CHEM, 2017, 2 (02): : 258 - 270
  • [4] Capturing the swelling of solid-electrolyte interphase in lithium metal batteries
    Zhang, Zewen
    Li, Yuzhang
    Xu, Rong
    Zhou, Weijiang
    Li, Yanbin
    Oyakhire, Solomon T.
    Wu, Yecun
    Xu, Jinwei
    Wang, Hansen
    Yu, Zhiao
    Boyle, David T.
    Huang, William
    Ye, Yusheng
    Chen, Hao
    Wan, Jiayu
    Bao, Zhenan
    Chiu, Wah
    Cui, Yi
    [J]. SCIENCE, 2022, 375 (6576) : 66 - +
  • [5] Perspective on solid-electrolyte interphase regulation for lithium metal batteries
    Wu, Mingguang
    Li, Yong
    Liu, Xinhua
    Yang, Shichun
    Ma, Jianmin
    Dou, Shixue
    [J]. SMARTMAT, 2021, 2 (01): : 5 - 11
  • [6] Stability of Solid-Electrolyte Interphase (SEI) on the Lithium Metal Surface in Lithium Metal Batteries (LMBs)
    Ramasubramanian, Ajaykrishna
    Yurkiv, Vitaliy
    Foroozan, Tara
    Ragone, Marco
    Shahbazian-Yassar, Reza
    Mashayek, Farzad
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 10560 - 10567
  • [7] In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries
    Deng, Tao
    Cao, Longsheng
    He, Xinzi
    Li, Ai-Min
    Li, Dan
    Xu, Jijian
    Liu, Sufu
    Bai, Panxing
    Jin, Ting
    Ma, Lin
    Schroeder, Marshall A.
    Fan, Xiulin
    Wang, Chunsheng
    [J]. CHEM, 2021, 7 (11): : 3052 - 3068
  • [8] Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries
    Fan, Cailing
    Ahmad, Niaz
    Song, Tinglu
    Zeng, Chaoyuan
    Liang, Xiaoxiao
    Dong, Qinxi
    Yang, Wen
    [J]. NANO RESEARCH, 2024,
  • [9] Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries
    Li, Tao
    Zhang, Xue-Qiang
    Shi, Peng
    Zhang, Qiang
    [J]. JOULE, 2019, 3 (11) : 2647 - 2661
  • [10] A Facile Potential Hold Method for Fostering an Inorganic Solid-Electrolyte Interphase for Anode-Free Lithium-Metal Batteries
    Shin, Woochul
    Manthiram, Arumugam
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (13)