RIDGE REGRESSION AND KALMAN FILTERING FOR TARGET TRACKING IN WIRELESS SENSOR NETWORKS

被引:0
|
作者
Mahfouz, Sandy [1 ]
Mourad-Chehade, Farah [1 ]
Honeine, Paul [1 ]
Farah, Joumana [2 ]
Snoussi, Hichem [1 ]
机构
[1] Univ Technol Troyes, Inst Charles Delaunay, CNRS, Troyes, France
[2] Univ St Esprit Kaslik, Fac Engn, Dept Telecommun, Juniyah, Lebanon
关键词
radio-fingerprinting; Kalman filter; ridge regression; RSSI; tracking; WSN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces an original method for target tracking in wireless sensor networks that combines machine learning and Kalman filtering. A database of radio-fingerprints is used, along with the ridge regression learning method, to compute a model that takes as input RSSI information, and yields, as output, the positions where the RSSIs are measured. This model leads to a position estimate for each target. The Kalman filter is used afterwards to combine the model's estimates with predictions of the target's positions based on acceleration information, leading to more accurate ones.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条
  • [1] Sparsity-Promoting Extended Kalman Filtering for Target Tracking in Wireless Sensor Networks
    Masazade, Engin
    Fardad, Makan
    Varshney, Pramod K.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (12) : 845 - 848
  • [2] Kalman Filtering Framework-Based Real Time Target Tracking in Wireless Sensor Networks Using Generalized Regression Neural Networks
    Jondhale, Satish R.
    Deshpande, Rajkumar S.
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (01) : 224 - 233
  • [3] Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering
    Jian Xu
    JianXun Li
    Sheng Xu
    [J]. Science China Information Sciences, 2012, 55 : 530 - 544
  • [4] Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering
    XU Jian1
    2Department of Automation
    3School of Mechanical Engineering
    [J]. Science China(Information Sciences), 2012, 55 (03) : 530 - 544
  • [5] Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering
    Xu Jian
    Li JianXun
    Xu Sheng
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (03) : 530 - 544
  • [6] Target Tracking with the Prediction of Trajectory and Kalman Filter in Wireless Sensor Networks
    Zhang, Xiushe
    Ding, Qiqi
    Hu, Xiaoquan
    Liu, Qin
    Wu, Jianshe
    [J]. ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING, 2020, 590 : 403 - 409
  • [7] Target tracking in wireless sensor networks using compressed Kalman filter
    Lin, Jianyong
    Xie, Lihua
    Xiao, Wendong
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2009, 6 (3-4) : 251 - 262
  • [8] Collaborative Target Tracking in Wireless Sensor Networks using Quantized Innovations and Sigma-Point Kalman Filtering
    Zhou, Yan
    Li, Jianxun
    Wang, Dongli
    [J]. ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 931 - +
  • [9] Collaborative Target Tracking using Distributed Kalman Filtering on Mobile Sensor Networks
    Olfati-Saber, Reza
    Jalalkamali, Parisa
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 1100 - 1105
  • [10] A Comprehensive Study of Kalman Filter and Extended Kalman Filter for Target Tracking in Wireless Sensor Networks
    Di, Ma
    Joo, Er Meng
    Beng, Lim Hock
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2791 - +