Principal derivations and codimension one ideals in contact and Frobenius Lie algebras

被引:7
|
作者
Barajas, T. [1 ]
Roque, E. [1 ]
Salgado, G. [1 ,2 ]
机构
[1] UASLP, Fac Ciencias, Av Salvador Nava S-N, San Luis Potosi 78290, Slp, Mexico
[2] Ctr Invest Matemat, Guanajuato, Mexico
关键词
Contact Lie algebras; symplectic Lie algebras; Frobenius Lie algebras; principal element; principal derivations; Primary; Secondary;
D O I
10.1080/00927872.2019.1623238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is twofold. First, we give an inductive procedure to construct a Frobenius (resp. contact) Lie algebra from a contact (resp. Frobenius) Lie algebra. Second, we prove that all Frobenius Lie algebras can be constructed in this way, i.e., every Frobenius Lie algebra can be constructed as an extension of a contact Lie algebra by adding a distinguished element called principal derivation. Hence, classification of Frobenius Lie algebras will follow from classification of contact Lie algebras and every contact Lie algebra which admits a principal derivation is isomorphic to a subalgebra of As an example, we classify all 4-dimensional Frobenius Lie algebra.
引用
收藏
页码:5380 / 5391
页数:12
相关论文
共 50 条
  • [1] On Lie derivations of Lie ideals of prime algebras
    Beidar, KI
    Chebotar, MA
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) : 131 - 148
  • [2] On Lie derivations of Lie ideals of prime algebras
    K. I. Beidar
    M. A. Chebotar
    Israel Journal of Mathematics, 2001, 123 : 131 - 148
  • [3] On generalized Lie derivations of Lie ideals of prime algebras
    Liao, Ping-Bao
    Liu, Cheng-Kai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1236 - 1242
  • [4] Higher derivations on Lie ideals of triangular algebras
    D. Han
    Siberian Mathematical Journal, 2012, 53 : 1029 - 1036
  • [5] Higher derivations on Lie ideals of triangular algebras
    Han, D.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 1029 - 1036
  • [6] Lie algebras of derivations with large abelian ideals
    Klymenko, I. S.
    Lysenko, S., V
    Petravchuk, A. P.
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 28 (01): : 123 - 129
  • [7] Ideals of finite codimension in contact Lie algebra
    Benalili, M
    Lansari, A
    JOURNAL OF LIE THEORY, 2001, 11 (01) : 129 - 134
  • [8] On Properties of Principal Elements of Frobenius Lie Algebras
    Diatta, Andre
    Manga, Bakary
    JOURNAL OF LIE THEORY, 2014, 24 (03) : 849 - 864
  • [9] Banach Lie algebras with Lie subalgebras of finite codimension have Lie ideals
    Kissin, Edward
    Shulman, Victor S.
    Turovskii, Yurii V.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 603 - 626
  • [10] Lie algebras of cohomological codimension one
    Armstrong, GF
    Cairns, G
    Kim, GK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) : 709 - 714