Quadratic Frequency Modulation Signals Parameter Estimation Based on Product High Order Ambiguity Function-Modified Integrated Cubic Phase Function

被引:4
|
作者
Zhu, Lei [1 ]
机构
[1] Jiangsu Automat Res Inst, Lianyungang 222006, Peoples R China
关键词
quadratic frequency modulation (QFM) signal; parameter estimation; phase differentiation; modified integrated cubic phase function (MICPF); multi-scale factors; FOURIER-TRANSFORM; MANEUVERING TARGET; ISAR; ALGORITHM; TOOL;
D O I
10.3390/info10040140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, the multi-component quadratic frequency modulation (QFM) signals are more suitable model for azimuth echo signals. The quadratic chirp rate (QCR) and chirp rate (CR) cause the ISAR imaging defocus. Thus, it is important to estimate QCR and CR of multi-component QFM signals in ISAR imaging system. The conventional QFM signal parameter estimation algorithms suffer from the cross-term problem. To solve this problem, this paper proposes the product high order ambiguity function-modified integrated cubic phase function (PHAF-MICPF). The PHAF-MICPF employs phase differentiation operation with multi-scale factors and modified coherently integrated cubic phase function (MICPF) to transform the multi-component QFM signals into the time-quadratic chirp rate (T-QCR) domains. The cross-term suppression ability of the PHAF-MICPF is improved by multiplying different T-QCR domains that are related to different scale factors. Besides, the multiplication operation can improve the anti-noise performance and solve the identifiability problem. Compared with high order ambiguity function-integrated cubic phase function (HAF-ICPF), the simulation results verify that the PHAF-MICPF acquires better cross-term suppression ability, better anti-noise performance and solves the identifiability problem.
引用
收藏
页数:14
相关论文
共 46 条
  • [1] Parameter estimation of multicomponent linear/quadratic chirp signals using product, cubic phase function
    Wang Pu
    Yang Jianyu
    CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (01): : 127 - 131
  • [2] Parameter estimation of multicomponent linear/quadratic chirp signals using product cubic phase function
    School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
    Chin J Electron, 2007, 1 (127-131):
  • [3] Doppler parameter estimation based on product high-order ambiguity function
    Department of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China
    Dianzi Yu Xinxi Xuebao, 2007, 7 (1678-1682):
  • [4] Parameter Estimation of Linear Frequency-Modulated Signals Using Integrated Cubic Phase Function
    Wang, Pu
    Li, Hongbin
    Himed, Braham
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 487 - +
  • [5] Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals
    Porat, B
    Friedlander, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (03) : 995 - 1001
  • [6] Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals
    Technion - Israel Inst of Technology, Haifa, Israel
    IEEE Trans Inf Theory, 3 (995-1001):
  • [7] Parameter estimation for micro-Doppler signals based on cubic phase function
    Li, Po
    Wang, De-Chun
    Chen, Jin-Li
    SIGNAL IMAGE AND VIDEO PROCESSING, 2013, 7 (06) : 1239 - 1249
  • [8] Parameter estimation for micro-Doppler signals based on cubic phase function
    Po Li
    De-Chun Wang
    Jin-Li Chen
    Signal, Image and Video Processing, 2013, 7 : 1239 - 1249
  • [9] Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function
    Jin, Yan
    Duan, Pengting
    Ji, Hongbing
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (12) : 4445 - 4462
  • [10] Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function
    Yan Jin
    Pengting Duan
    Hongbing Ji
    Circuits, Systems, and Signal Processing, 2016, 35 : 4445 - 4462