Lifted cover inequalities for 0-1 integer programs: Complexity

被引:46
|
作者
Gu, ZH [1 ]
Nemhauser, GL [1 ]
Savelsbergh, MWP [1 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
D O I
10.1287/ijoc.11.1.117
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate several complexity issues related to branch-and-cut algorithms for 0-1 integer programming based on lifted-cover inequalities (LCIs). We show that given a fractional point, determining a violated LCI over all minimal covers is NP-hard. The main result is that there exists a class of 0-1 knapsack instances for which any branch-and-out algorithm based on LCls has to evaluate an exponential number of nodes to prove optimality.
引用
下载
收藏
页码:117 / 123
页数:7
相关论文
共 50 条
  • [1] Lifted flow cover inequalities for mixed 0-1 integer programs
    Gu, ZH
    Nemhauser, GL
    Savelsbergh, MWP
    MATHEMATICAL PROGRAMMING, 1999, 85 (03) : 439 - 467
  • [2] Lifted flow cover inequalities for mixed 0-1 integer programs
    Zonghao Gu
    George L. Nemhauser
    Martin W.P. Savelsbergh
    Mathematical Programming, 1999, 85 : 439 - 467
  • [3] Lifted Tableaux Inequalities for 0-1 Mixed-Integer Programs: A Computational Study
    Narisetty, Amar K.
    Richard, Jean-Philippe P.
    Nemhauser, George L.
    INFORMS JOURNAL ON COMPUTING, 2011, 23 (03) : 416 - 424
  • [4] Lifted inequalities for 0-1 mixed integer programming: Superlinear lifting
    J.-P.P. Richard
    I.R. de Farias Jr
    G.L. Nemhauser
    Mathematical Programming, 2003, 98 : 115 - 143
  • [5] Lifted inequalities for 0-1 mixed integer programming: Superlinear lifting
    Richard, JPP
    de Farias, IR
    Nemhauser, GL
    MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 115 - 143
  • [6] Lifted inequalities for 0-1 mixed integer programming: Basic theory and algorithms
    J.-P.P. Richard
    I.R. de Farias Jr
    G.L. Nemhauser
    Mathematical Programming, 2003, 98 : 89 - 113
  • [7] Lifted inequalities for 0-1 mixed integer programming: Basic theory and algorithms
    Richard, JPP
    de Farias, IR
    Nemhauser, GL
    MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 89 - 113
  • [8] Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem
    Kaparis, Konstantinos
    Letchford, Adam N.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 186 (01) : 91 - 103
  • [9] On Combinatorial Approximation of Covering 0-1 Integer Programs and Partial Set Cover
    Toshihiro Fujito
    Journal of Combinatorial Optimization, 2004, 8 : 439 - 452
  • [10] On combinatorial approximation of covering 0-1 integer programs and partial set cover
    Fujito, T
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (04) : 439 - 452