Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases

被引:3
|
作者
Straimer, Judith [1 ]
Lee, Marcus C. S. [1 ]
Lee, Andrew H. [1 ]
Zeitler, Bryan [2 ]
Williams, April E. [3 ,4 ]
Pearl, Jocelynn R. [2 ]
Zhang, Lei [2 ]
Rebar, Edward J. [2 ]
Gregory, Philip D. [2 ]
Llinas, Manuel [3 ,4 ]
Urnov, Fyodor D. [2 ]
Fidock, David A. [1 ,5 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Microbiol & Immunol, New York, NY 10032 USA
[2] Sangamo BioSci Inc, Richmond, CA USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[5] Columbia Univ Coll Phys & Surg, Dept Med, Div Infect Dis, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
TRANSMEMBRANE PROTEIN PFCRT; CHLOROQUINE RESISTANCE; MALARIA PARASITES; MUTATIONS; TRANSMISSION; RESPONSES; SEQUENCE; QUININE; DNA;
D O I
10.1038/NMETH.2143
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Malaria afflicts over 200 million people worldwide, and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum-induced pathogenesis, including drug-resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene-deletion parasites with unprecedented speed (2 weeks), both with and without direct selection. ZFNs engineered against the parasite gene pfcrt, responsible for escape under chloroquine treatment, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. This method will enable a diverse array of genome-editing approaches to interrogate this human pathogen.
引用
收藏
页码:993 / +
页数:9
相关论文
共 50 条
  • [1] Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases
    Judith Straimer
    Marcus C S Lee
    Andrew H Lee
    Bryan Zeitler
    April E Williams
    Jocelynn R Pearl
    Lei Zhang
    Edward J Rebar
    Philip D Gregory
    Manuel Llinás
    Fyodor D Urnov
    David A Fidock
    Nature Methods, 2012, 9 : 993 - 998
  • [2] Editing the Plasmodium vivax Genome, Using Zinc-Finger Nucleases
    Barros, Roberto R. Moraes
    Straimer, Judith
    Sa, Juliana M.
    Salzman, Rebecca E.
    Melendez-Muniz, Viviana A.
    Mu, Jianbing
    Fidock, David A.
    Wellems, Thomas E.
    JOURNAL OF INFECTIOUS DISEASES, 2015, 211 (01): : 125 - 129
  • [3] Genome editing using engineered zinc finger nucleases
    Kianianmomeni, Arash
    CLINICAL BIOCHEMISTRY, 2011, 44 (13) : S28 - S28
  • [4] Genome editing with engineered zinc finger nucleases
    Urnov, Fyodor D.
    Rebar, Edward J.
    Holmes, Michael C.
    Zhang, H. Steve
    Gregory, Philip D.
    NATURE REVIEWS GENETICS, 2010, 11 (09) : 636 - 646
  • [5] Genome editing with engineered zinc finger nucleases
    Fyodor D. Urnov
    Edward J. Rebar
    Michael C. Holmes
    H. Steve Zhang
    Philip D. Gregory
    Nature Reviews Genetics, 2010, 11 : 636 - 646
  • [6] Genome editing with modularly assembled zinc-finger nucleases
    Jin-Soo Kim
    Hyung Joo Lee
    Dana Carroll
    Nature Methods, 2010, 7 : 91 - 91
  • [7] Genome editing with modularly assembled zinc-finger nucleases
    Kim, Jin-Soo
    Lee, Hyung Joo
    Carroll, Dana
    NATURE METHODS, 2010, 7 (02) : 91 - 91
  • [8] Site-specific DNA excision via engineered zinc finger nucleases
    Lee, Hyung Joo
    Kim, Eunji
    Kim, Jin-Soo
    TRENDS IN BIOTECHNOLOGY, 2010, 28 (09) : 445 - 446
  • [9] Targeted genome editing in pluripotent stem cells using zinc-finger nucleases
    Bobis-Wozowicz, Sylwia
    Osiak, Anna
    Rahman, Shamim H.
    Cathomen, Toni
    METHODS, 2011, 53 (04) : 339 - 346
  • [10] SITE-SPECIFIC NUCLEASES IN PLANT GENOME EDITING
    Sega, Pawel
    Linkiewicz, Anna
    POSTEPY BIOLOGII KOMORKI, 2014, 41 (04) : 701 - 720