Generalized quasi-Einstein manifolds with harmonic Weyl tensor

被引:104
|
作者
Catino, Giovanni [1 ]
机构
[1] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy
关键词
Riemannian Manifold; Weyl Tensor; Warped Product; Einstein Metrics; Einstein Manifold;
D O I
10.1007/s00209-011-0888-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the notion of generalized quasi-Einstein manifold that generalizes the concepts of Ricci soliton, Ricci almost soliton and quasi-Einstein manifolds. We prove that a complete generalized quasi-Einstein manifold with harmonic Weyl tensor and with zero radial Weyl curvature is locally a warped product with (n - 1)-dimensional Einstein fibers. In particular, this implies a local characterization for locally conformally flat gradient Ricci almost solitons, similar to that proved for gradient Ricci solitons.
引用
收藏
页码:751 / 756
页数:6
相关论文
共 50 条
  • [1] Generalized quasi-Einstein manifolds with harmonic Weyl tensor
    Giovanni Catino
    [J]. Mathematische Zeitschrift, 2012, 271 : 751 - 756
  • [2] Generalized quasi-Einstein manifolds with harmonic anti-self dual Weyl tensor
    Benedito Leandro Neto
    [J]. Archiv der Mathematik, 2016, 106 : 489 - 499
  • [3] Generalized quasi-Einstein manifolds with harmonic anti-self dual Weyl tensor
    Leandro Neto, Benedito
    [J]. ARCHIV DER MATHEMATIK, 2016, 106 (05) : 489 - 499
  • [4] On quasi-Einstein Weyl manifolds
    Gul, Ilhan
    Canfes, Elif Ozkara
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (09)
  • [5] A Note on Generalized Quasi-Einstein and (λ, n plus m)-Einstein Manifolds with Harmonic Conformal Tensor
    Shenawy, Sameh
    Mantica, Carlo Alberto
    Molinari, Luca Guido
    Bin Turki, Nasser
    [J]. MATHEMATICS, 2022, 10 (10)
  • [6] On generalized quasi-Einstein manifolds
    Mirshafeazadeh, Mir Ahmad
    Bidabad, Behroz
    [J]. ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (03) : 193 - 202
  • [7] On generalized quasi-Einstein manifolds
    Freitas Filho, Antonio Airton
    Tenenblat, Keti
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [8] Rigidity of Einstein manifolds and generalized quasi-Einstein manifolds
    Deng, Yi Hua
    Luo, Li Ping
    Zhou, Li Jun
    [J]. ANNALES POLONICI MATHEMATICI, 2015, 115 (03) : 235 - 240
  • [9] A NOTE ON THE CLASSIFICATION OF NONCOMPACT QUASI-EINSTEIN MANIFOLDS WITH VANISHING CONDITION ON THE WEYL TENSOR
    Baltazar, H.
    Matos Neto, M.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2022, 64 (02) : 336 - 346
  • [10] ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Shaikh, A. A.
    Jana, Sanjib Kumar
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 9 - 23