PRIL: Perceptron Ranking Using Interval Labels

被引:1
|
作者
Manwani, Naresh [1 ]
机构
[1] Int Inst Informat Technol, KCIS, Machine Learning Lab, Hyderabad, Telangana, India
关键词
Online Learning; Ranking; Interval Labels;
D O I
10.1145/3297001.3297011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose an online learning algorithm called PRIL for learning ranking classifiers using interval labeled data. We show the correctness of PRIL by showing that it preserves the orderings of the thresholds in successive trials. We show that the proposed algorithm converges in finite number of steps if there exists an ideal classifier. We also give the mistake bound for the general case and provide O(root T) regret bound for the proposed algorithm. We show the effectiveness of PRIL by comparing its performance with other approaches.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [1] Perceptron Ranking Using Interval Labels with Ramp Loss for Online Ordinal Regression
    Zhang, Cuiqing
    Zhang, Maojun
    Liang, Xijun
    Xia, Zhonghang
    Nan, Jiangxia
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [2] RANKING AND PERCEPTRON LEARNING
    Falkowski, Bernd-Juergen
    [J]. COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 517 - 522
  • [3] Ranking and reranking with perceptron
    Shen, LB
    Joshi, AK
    [J]. MACHINE LEARNING, 2005, 60 (1-3) : 73 - 96
  • [4] Ranking and Reranking with Perceptron
    Libin Shen
    Aravind K. Joshi
    [J]. Machine Learning, 2005, 60 : 73 - 96
  • [5] Voltage contingency ranking using fuzzified multilayer perceptron
    Pandit, M
    Srivastava, L
    Sharma, J
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2001, 59 (01) : 65 - 73
  • [6] Ranking class labels using query sessions
    Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, United States
    [J]. ACL-HLT - Proc. Annu. Meet.. Assoc. Comput. Linguist.: Hum. Lang. Technol., (1607-1615):
  • [7] Ranking with uncertain labels
    Yan, Shuicheng
    Wang, Huan
    Huang, Thomas S.
    Yang, Qiong
    Tang, Xiaoou
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 96 - +
  • [8] Scoring Systems and Large Margin Perceptron Ranking using Positive Weights
    Falkowski, Bernd-Juergen
    Toersel, Arne-Michael
    [J]. PATTERN RECOGNITION IN INFORMATION SYSTEMS, PROCEEDINGS, 2008, : 213 - 222
  • [9] Possibility and Necessity Pattern Classification using an Interval Arithmetic Perceptron
    G.P. Drago
    S. Ridella
    [J]. Neural Computing & Applications, 1999, 8 : 40 - 52
  • [10] Possibility and necessity pattern classification using an interval arithmetic perceptron
    Drago, GP
    Ridella, S
    [J]. NEURAL COMPUTING & APPLICATIONS, 1999, 8 (01): : 40 - 52