Analytical expression for zero Lyapunov exponent of chaotic noised oscillators

被引:6
|
作者
Hramov, Alexander E. [1 ,2 ]
Koronovskii, Alexey A. [1 ,2 ]
Kurovskaya, Maria K. [1 ]
Moskalenko, Olga I. [1 ,2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov 410012, Russia
[2] Saratov State Tech Univ, Saratov 410056, Russia
基金
俄罗斯科学基金会;
关键词
Lyapunov exponent; Chaotic oscillators; Noise; Synchronization; PHASE SYNCHRONIZATION; GENERALIZED SYNCHRONIZATION; SYNCHRONOUS BEHAVIOR; FRACTAL DIMENSION; INTERMITTENCY; UNIVERSALITY; ENTRAINMENT; TRANSITION; ENTROPY; SYSTEMS;
D O I
10.1016/j.chaos.2015.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the analytical formula for zero Lyapunov exponent describing the dynamics of interacting chaotic systems with noise. The deduced analytical prediction is in a good agreement with the value of zero Lyapunov exponent obtained numerically for two unidirectionally coupled Rossler oscillators. We have shown that this good agreement is observed for a wide diapason of the values of the control parameters. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 50 条
  • [1] On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO
    Silva-Juárez A.
    Morales-Pérez C.J.
    de la Fraga L.G.
    Tlelo-Cuautle E.
    Rangel-Magdaleno J.J.
    [J]. International Journal of Dynamics and Control, 2019, 7 (04) : 1157 - 1172
  • [2] Noise induced destruction of zero Lyapunov exponent in coupled chaotic systems
    Liu, ZH
    Ma, WC
    [J]. PHYSICS LETTERS A, 2005, 343 (04) : 300 - 305
  • [3] Nonremovable zero Lyapunov exponent
    A. S. Gorodetski
    Yu. S. Ilyashenko
    V. A. Kleptsyn
    M. B. Nalsky
    [J]. Functional Analysis and Its Applications, 2005, 39 : 21 - 30
  • [4] Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators
    Luis Gerardo de la Fraga
    Esteban Tlelo-Cuautle
    [J]. Nonlinear Dynamics, 2014, 76 : 1503 - 1515
  • [5] Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators
    Gerardo de la Fraga, Luis
    Tlelo-Cuautle, Esteban
    [J]. NONLINEAR DYNAMICS, 2014, 76 (02) : 1503 - 1515
  • [6] Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm
    Carbajal-Gomez, V. H.
    Tlelo-Cuautle, E.
    Fernandez, F. V.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8163 - 8168
  • [7] Upper quantum Lyapunov exponent and parametric oscillators
    Jauslin, HR
    Sapin, O
    Guérin, S
    Wreszinski, WF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4377 - 4385
  • [8] On the maximum Lyapunov exponent of the motion in a chaotic layer
    Shevchenko, II
    [J]. JETP LETTERS, 2004, 79 (11) : 523 - 528
  • [9] On the maximum Lyapunov exponent of the motion in a chaotic layer
    I. I. Shevchenko
    [J]. Journal of Experimental and Theoretical Physics Letters, 2004, 79 : 523 - 528
  • [10] Ergodic maps with Lyapunov exponent equal to zero
    Goloubentsev, AF
    Anikin, VM
    Arkadaksky, SS
    [J]. CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, 2000, : 44 - 47