Driven translocation of a semi-flexible chain through a nanopore: A Brownian dynamics simulation study in two dimensions

被引:35
|
作者
Adhikari, Ramesh [1 ]
Bhattacharya, Aniket [1 ]
机构
[1] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 20期
基金
美国国家科学基金会;
关键词
FORCED POLYMER TRANSLOCATION; EXCLUDED-VOLUME; MONTE-CARLO; FABRICATION; MOLECULES; EXPONENTS;
D O I
10.1063/1.4807002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study translocation dynamics of a semi-flexible polymer chain through a nanoscopic pore in two dimensions using Langevin dynamics simulation in presence of an external bias F inside the pore. For chain length N and stiffness parameter kappa(b) considered in this paper, we observe that the mean first passage time <tau > increases as <tau(kappa(b))> similar to <tau(kappa(b) = 0)> l(p)(aN), where kappa(b) and l(p) are the stiffness parameter and persistence length, respectively, and a(N) is a constant that has a weak N dependence. We monitor the time dependence of the last monomer x(N)(t) at the cis compartment and calculate the tension propagation time (TP) t(tp) directly from simulation data for < x(N)(t)> similar to t as alluded in recent nonequlibrium TP theory [T. Sakaue, Phys. Rev. E 76, 021803 (2007)] and its modifications to Brownian dynamics tension propagation theory [T. Ikonen, A. Bhattacharya, T. Ala-Nissila, and W. Sung, Phys. Rev. E 85, 051803 (2012); J. Chem. Phys. 137, 085101 (2012)] originally developed to study translocation of a fully flexible chain. We also measure t(tp) from peak position of the waiting time distribution W(s) of the translocation coordinate s (i.e., the monomer inside the pore), and explicitly demonstrate the underlying TP picture along the chain backbone of a translocating chain to be valid for semi-flexible chains as well. From the simulation data, we determine the dependence of t(tp) on chain persistence length l(p) and show that the ratio t(tp)/<tau > is independent of the bias F. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Driven translocation of a semi-flexible polymer through a nanopore
    Sarabadani, Jalal
    Ikonen, Timo
    Mokkonen, Harri
    Ala-Nissila, Tapio
    Carson, Spencer
    Wanunu, Meni
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] Driven translocation of a semi-flexible polymer through a nanopore
    Jalal Sarabadani
    Timo Ikonen
    Harri Mökkönen
    Tapio Ala-Nissila
    Spencer Carson
    Meni Wanunu
    [J]. Scientific Reports, 7
  • [3] Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study
    Tian, P
    Smith, GD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (21): : 11475 - 11483
  • [4] Conformations, transverse fluctuations, and crossover dynamics of a semi-flexible chain in two dimensions
    Huang, Aiqun
    Bhattacharya, Aniket
    Binder, Kurt
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21):
  • [5] Dynamic Scaling Theory of the Forced Translocation of a Semi-flexible Polymer Through a Nanopore
    Pui-Man Lam
    Yi Zhen
    [J]. Journal of Statistical Physics, 2015, 161 : 197 - 209
  • [6] Dynamic Scaling Theory of the Forced Translocation of a Semi-flexible Polymer Through a Nanopore
    Lam, Pui-Man
    Zhen, Yi
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (01) : 197 - 209
  • [7] Effect of solvent viscosity on driven translocation of a semi-flexible chain through a nano-pore
    Adhikari, Ramesh
    Bhattacharya, Aniket
    [J]. EPL, 2018, 121 (06)
  • [8] A molecular dynamics simulation study of semi-flexible main chain liquid crystalline polymers
    He, L
    Shen, YW
    [J]. JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2006, 761 (1-3): : 143 - 149
  • [9] Universal monomer dynamics of a two-dimensional semi-flexible chain
    Huang, Aiqun
    Adhikari, Ramesh
    Bhattacharya, Aniket
    Binder, Kurt
    [J]. EPL, 2014, 105 (01)
  • [10] Driven Translocation of Semi-Flexible Polymer under Strong Force
    Saito, Takuya
    Sakaue, Takahiro
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (191): : 210 - 214