A note on LDP for supremum of Gaussian processes over infinite horizon

被引:19
|
作者
Debicki, K [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
Brownian motion; exponential bound; fractional Brownian motion; Gaussian process; large deviation; logarithmic asymptotic; long range dependence;
D O I
10.1016/S0167-7152(99)00011-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to give a short proof of a large deviation result for supremum of nencentered Gaussian process over infinite horizon. We study family {mu(X,d;u); u > 0} of Borel probability measures on R, where mu(X,d;u)(B) = P ((sup)(t greater than or equal to 0) 1/u(X(t) - d(t)) is an element of B) for Borel B subset of R, drift function d(t) and centered Gaussian processes {X (t); t greater than or equal to 0} with variance function sigma(2)(t). We assume that for each 0 less than or equal to epsilon less than or equal to 1 P ((sup)(t greater than or equal to 0) (X(t) - epsilon d(t)) > u ) --> 0 for u --> infinity. We obtain logarithmic asymptotic of P(sup(t greater than or equal to 0) (X(t)) > u). Under additional assumption, that sigma(2)(t) is regularly varying at infinity and d(t) is linear, we prove large deviation principle for {mu(X,d;u); u > 0}. (C) 1999 Elsevier Science B.V. All rights reserved. MSG. primary 60G15; secondary 60G70; 68M20.
引用
收藏
页码:211 / 219
页数:9
相关论文
共 50 条
  • [1] Extremes of Gaussian processes over an infinite horizon
    Dieker, AB
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (02) : 207 - 248
  • [2] Infinite-Horizon Gaussian Processes
    Solin, Arno
    Hensman, James
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] Multi-output Infinite Horizon Gaussian Processes
    Lim, Jaehyun
    Park, Jehyun
    Nah, Sungjae
    Choi, Jongeun
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 1542 - 1549
  • [4] Limit theorems for supremum of Gaussian processes over a random interval
    Lin Fu-ming
    Peng Zuo-xiang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (03) : 335 - 343
  • [5] Limit theorems for supremum of Gaussian processes over a random interval
    Fu-ming Lin
    Zuo-xiang Peng
    Applied Mathematics-A Journal of Chinese Universities, 2018, 33 : 335 - 343
  • [6] Limit theorems for supremum of Gaussian processes over a random interval
    LIN Fu-ming
    PENG Zuo-xiang
    Applied Mathematics:A Journal of Chinese Universities, 2018, 33 (03) : 335 - 343
  • [7] A note on the existence of a monetary equilibrium over an infinite horizon
    Gaetano Bloise
    Economic Theory, 2006, 27 : 59 - 77
  • [8] A note on the existence of a monetary equilibrium over an infinite horizon
    Bloise, G
    ECONOMIC THEORY, 2006, 27 (01) : 59 - 77
  • [9] A PTAS for Computing the Supremum of Gaussian Processes
    Meka, Raghu
    2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, : 217 - 222
  • [10] On the supremum law of certain unbounded Gaussian processes
    Wschebor, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10): : 823 - 826