Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries

被引:61
|
作者
Choi, Keun-Ho [1 ]
Kim, Se-Hee [1 ]
Ha, Hyo-Jeong [2 ]
Kil, Eun-Hye [2 ]
Lee, Chang Kee [3 ]
Lee, Sang Bong [3 ]
Shim, Jin Kie [3 ]
Lee, Sang-Young [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
[2] Kangwon Natl Univ, Coll Engn, Dept Chem Engn, Chunchon 200701, Kangwondo, South Korea
[3] Korea Inst Ind Technol, Korea Packaging Ctr, Puchon 421742, Gyeonggido, South Korea
关键词
SUCCINONITRILE; CONDUCTIVITY; PAPER; THIN;
D O I
10.1039/c3ta10368d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate a bendable plastic crystal polymer electrolyte (referred to as "B-PCPE") for use in flexible lithium-ion batteries. The B-PCPE proposed herein is composed of a plastic crystal electrolyte (PCE, 1 M lithium bis-trifluoromethanesulphonimide (LiTFSI) in succinonitrile (SN)) and a UV (ultraviolet)-cured polymer network bearing long linear hydrocarbon chains (here, trimethylolpropane propoxylate triacrylate (TPPTA) polymer is exploited). The solid electrolyte characteristics of the B-PCPE are investigated in terms of plastic crystal behavior, mechanical bendability, ionic conductivity, and cell performance. Owing to the presence of long linear hydrocarbon chains attached to crosslinkable acrylate groups, the TPPTA polymer network in the B-PCPE acts as a compliant mechanical framework, thereby exerting a beneficial influence on bendability and also interfacial resistance with lithium metal electrodes. Meanwhile, the B-PCPE exhibits slightly lower ionic conductivity than a control sample (referred to as "R-PCPE") incorporating a rigid and stiff polymer network of ethoxylated trimethylolpropane triacrylate (ETPTA). This unique behavior of the B-PCPE is discussed with an in-depth consideration of the polymer network structure and its specific interaction with the lattice defect phase of SN in the PCE. Although relatively sluggish ionic transport is observed in the B-PCPE, its intimate interfacial contact with electrodes (possibly due to the mechanically compliant TPPTA polymer network) may beneficially contribute to imparting satisfactory cycling performance.
引用
收藏
页码:5224 / 5231
页数:8
相关论文
共 50 条
  • [1] A novel plastic crystal composite polymer electrolyte with excellent mechanical bendability and electrochemical performance for flexible lithium-ion batteries
    Liu, Kai
    Ding, Fei
    Lu, Qingwen
    Liu, Jiaquan
    Zhang, Qingqing
    Liu, Xingjiang
    Xu, Qiang
    SOLID STATE IONICS, 2016, 289 : 1 - 8
  • [2] Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries
    Zhou, Yumei
    Zhang, Fengrui
    He, Peixin
    Zhang, Yuhong
    Sun, Yiyang
    Xu, Jingjing
    Hu, Jianchen
    Zhang, Haiyang
    Wu, Xiaodong
    JOURNAL OF ENERGY CHEMISTRY, 2020, 46 : 87 - 93
  • [3] Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries
    Yumei Zhou
    Fengrui Zhang
    Peixin He
    Yuhong Zhang
    Yiyang Sun
    Jingjing Xu
    Jianchen Hu
    Haiyang Zhang
    Xiaodong Wu
    Journal of Energy Chemistry, 2020, 46 (07) : 87 - 93
  • [4] ADVANCED GEL POLYMER ELECTROLYTE FOR LITHIUM-ION POLYMER BATTERIES
    Zhang, Ruisi
    Hashemi, Niloofar
    Ashuri, Maziar
    Montazami, Reza
    PROCEEDINGS OF THE ASME 7TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2013, 2014,
  • [5] Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
    Zhang, Ruisi
    Chen, Yuanfen
    Montazami, Reza
    MATERIALS, 2015, 8 (05): : 2735 - 2748
  • [6] Self-Repairable and Flexible Polymer Network Electrolyte with Enhanced Lithium-Ion Conduction for Lithium Metal Batteries
    Song, Yaduo
    Jiang, Yanxin
    Deng, Longjiang
    Yang, Guang
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (72)
  • [7] The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries
    Badi, Nacer
    Theodore, Azemtsop Manfo
    Alghamdi, Saleh A.
    Al-Aoh, Hatem A.
    Lakhouit, Abderrahim
    Singh, Pramod K.
    Norrrahim, Mohd Nor Faiz
    Nath, Gaurav
    POLYMERS, 2022, 14 (15)
  • [8] Nonflammable polymer acts as electrolyte in lithium-ion batteries
    不详
    ADVANCED MATERIALS & PROCESSES, 2008, 166 (07): : 21 - 21
  • [9] Macroporous nanocomposite polymer electrolyte for lithium-ion batteries
    Li, Z. H.
    Zhang, H. P.
    Zhang, P.
    Wu, Y. P.
    Zhou, X. D.
    JOURNAL OF POWER SOURCES, 2008, 184 (02) : 562 - 565
  • [10] Novel types of lithium-ion polymer electrolyte batteries
    Appetecchi, GB
    Croce, F
    Marassi, R
    Panero, S
    Ronci, F
    Savo, G
    Scrosati, B
    SOLID STATE IONICS, 2001, 143 (01) : 73 - 81