Bezier surfaces with linear isoparametric lines

被引:1
|
作者
Juhasz, Imre [1 ]
Roth, Agoston [2 ]
机构
[1] Univ Miskolc, Dept Descript Geometry, H-3515 Miskolc, Hungary
[2] Univ Babes Bolyai, Dept Comp Sci, RO-400084 Cluj Napoca, Romania
基金
匈牙利科学研究基金会;
关键词
Bezier surface; ruled surface;
D O I
10.1016/j.cagd.2007.09.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We provide control point based necessary and sufficient conditions for (n, m) Bezier surfaces to have linear isoparametric lines. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [1] Tensor product Bezier surfaces on triangle Bezier surfaces
    Lasser, D
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (08) : 625 - 643
  • [2] CONTOURING ON ISOPARAMETRIC SURFACES
    AKIN, JE
    GRAY, WH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (12) : 1893 - 1897
  • [3] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [4] Linear convexity conditions for rectangular and triangular Bernstein-Bezier surfaces
    Carnicer, JM
    Floater, MS
    Pena, JM
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 15 (01) : 27 - 38
  • [5] Isoparametric surfaces and the tt*-equations
    Schaefer, Lars
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 117 : 7 - 14
  • [6] Bezier developable surfaces
    Fernandez-Jambrina, L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 55 : 15 - 28
  • [7] Isoparametric surfaces in E(κ, τ)-spaces
    Dominguez-Vazquez, Miguel
    Manzano, Jose M.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (01) : 269 - 285
  • [8] Bezier type surfaces
    Piscoran Laurian, Ioan
    Pop, Ovidiu T.
    Dan, Barbosu
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 483 - 489
  • [9] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111
  • [10] TOPOLOGY OF ASYMPTOTIC LINES ON CLOSED LINEAR SURFACES
    KARAPETY.SE
    DOKLADY AKADEMII NAUK SSSR, 1973, 209 (02): : 283 - 286