Amphiphilic Block Copolymer Films: Phase Transition, Stabilization, and Nanoscale Templates

被引:18
|
作者
Park, Jung Hyun [1 ,2 ]
Sun, Yujie [2 ,3 ]
Goldman, Yale E. [2 ,3 ]
Composto, Russell J. [1 ,2 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Univ Penn, Nano Bio Interface Ctr, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Physiol, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
FORCE MICROSCOPY; THIN-FILMS; ACTIN; CELL; ARRAYS; NANOSTRUCTURES; STIFFNESS; 3-AMINOPROPYLTRIETHOXYSILANE; ORIENTATION; FABRICATION;
D O I
10.1021/ma8023393
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A morphological transition of asymmetric poly(styrene-b-acrylic acid) (PS-b-PAA) films is observed by in situ scanning probe microscopy (SPM) in aqueous media. Upon initial exposure to buffer solution at pH 74, spherical PAA domains swell through a glassy PS surface layer to form negatively charged mushroom caps. With further exposure, the PAA caps coalesce to produce a smooth, highly wettable surface. However, if films are exposed to a buffer Solution containing 3-aminopropyltriethoxysilane (APTES) for I h, the PAA domain swelling is greatly reduced and the mushroom caps stabilize at a diameter of 33 nm. This stabilization results from a cross-linking reaction between PAA and APTES, which also converts the PAA domains from a net negative to net positive charge. By varying molecular weights of PAA block in PS-b-PAA, the feature size and spacing can he tuned. To demonstrate air application for this template with positively charged domains, a cytoskeletal filament. F-Actin with a net negative charge, is organized on the PS-b-PAA template via electrostatic interactions under physiological conditions. F-Actin shows a tendency to align along the modified PAA mushroom caps.
引用
收藏
页码:1017 / 1023
页数:7
相关论文
共 50 条
  • [1] Nanoscale block copolymer templates decorated by nanoparticle arrays
    Deshmukh, Ranjan D.
    Buxton, Gavin A.
    Clarke, Nigel
    Composto, Russell J.
    MACROMOLECULES, 2007, 40 (17) : 6316 - 6324
  • [2] Amphiphilic block copolymer micelles for nanoscale drug delivery
    Kwon, GS
    Forrest, ML
    DRUG DEVELOPMENT RESEARCH, 2006, 67 (01) : 15 - 22
  • [3] Progress in preparation and application of amphiphilic block copolymer stabilized high internal phase emulsion templates
    Li J.
    Wu Y.
    Zhou Y.
    Luo Z.
    Huagong Xuebao/CIESC Journal, 2021, 72 (11): : 5443 - 5454
  • [4] Individual Confinement of Block Copolymer Microdomains in Nanoscale Crossbar Templates
    Park, Woon Ik
    Jung, Yun Kyung
    Kim, YongJoo
    Shin, Weon Ho
    Choi, Young Joong
    Park, Tae Wan
    Shin, Jung Ho
    Jeong, Young Hun
    Cho, Jeong Ho
    Shin, Hyo-Soon
    Kwon, Se-Hun
    Jung, Yeon Sik
    Kim, Kwang Ho
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (05)
  • [5] NANOSCALE PATTERNING IN BLOCK COPOLYMER THIN FILMS
    Park, Soojin
    Russell, Thomas P.
    NANO, 2010, 5 (01) : 1 - 11
  • [6] Nanoscopic templates from oriented block copolymer films
    Thurn-Albrecht, T
    Steiner, R
    DeRouchey, J
    Stafford, CM
    Huang, E
    Bal, M
    Tuominen, M
    Hawker, CJ
    Russell, T
    ADVANCED MATERIALS, 2000, 12 (11) : 787 - 791
  • [7] Nanoscale polypyrrole patterns using block copolymer surface micelles as templates
    Goren, M
    Lennox, RB
    NANO LETTERS, 2001, 1 (12) : 735 - 738
  • [8] Ordering transition of block copolymer films
    Arceo, A
    Green, PF
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15): : 6958 - 6962
  • [9] Film Confinement Induced "Jump-Percolation" Wetting Transition in Amphiphilic Block Copolymer Films
    Salunke, Namrata
    Nallapaneni, Asritha
    Yuan, Guangcui
    Stafford, Christopher M.
    Niu, Hui
    Shawkey, Matthew D.
    Weiss, R. A.
    Karim, Alamgir
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (40) : 35349 - 35359
  • [10] Amphiphilic block copolymer-templated nanoparticle synthesis and stabilization.
    Alexandridis, P
    Sakai, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U722 - U722