Locally arcwise connected metrizable spaces with the fixed point property are complete-metrizable

被引:1
|
作者
Niemiec, P [1 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30059 Krakow, Poland
关键词
complete metrizability; local connectedness; fixed point property;
D O I
10.1016/j.topol.2005.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Metrizable spaces which have no closed subset homeomorphic to the real halfline are considered. Complete-metrizability of such locally arcwise connected spaces is proved (Corollary 4) and a simple formula for a complete metric is given in Theorem 3. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1639 / 1642
页数:4
相关论文
共 50 条
  • [1] On one-point metrizable extensions of locally compact metrizable spaces
    Koushesh, M. R.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 698 - 721
  • [2] ON METRIZABLE REMAINDERS OF LOCALLY COMPACT SEPARABLE METRIZABLE SPACES
    Chatyrko, Vitalij A.
    Karassev, Alexandre
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (03): : 1067 - 1081
  • [3] FIXED-POINT PROPERTY FOR ARCWISE CONNECTED SPACES - CORRECTION
    SMITHSON, RE
    WARD, LE
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (02) : 511 - 514
  • [4] Connected economically metrizable spaces
    Banakh, Taras
    Vovk, Myroslava
    Wojcik, Michal Ryszard
    FUNDAMENTA MATHEMATICAE, 2011, 212 (02) : 145 - 173
  • [5] Condensations onto connected metrizable spaces
    Druzhinina, I
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (03): : 751 - 766
  • [6] New Fixed Point Tools in Non-metrizable Spaces
    Nicolae-Adrian Secelean
    Dariusz Wardowski
    Results in Mathematics, 2017, 72 : 919 - 935
  • [7] METRIZABLE LOCALLY CONVEX-SPACES
    VALDIVIA, M
    ARCHIV DER MATHEMATIK, 1976, 27 (01) : 79 - 85
  • [8] New Fixed Point Tools in Non-metrizable Spaces
    Secelean, Nicolae-Adrian
    Wardowski, Dariusz
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 919 - 935
  • [9] ON METRIZABLE VECTOR SPACES WITH THE LEBESGUE PROPERTY
    Wei, Zhou
    Yang, Zhichun
    Yao, Jen-chih
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (03): : 239 - 253
  • [10] ON THE SYMMETRIZABILITY OF LOCALLY-METRIZABLE SPACES
    DOMIATY, RZ
    MATHEMATISCHE NACHRICHTEN, 1981, 103 : 31 - 37