Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet

被引:138
|
作者
Knake, N. [1 ]
Reuter, S. [1 ]
Niemi, K. [1 ]
Schulz-von der Gathen, V. [1 ]
Winter, J. [1 ]
机构
[1] Ruhr Univ Bochum, Inst Expt Phys 2, D-44780 Bochum, Germany
关键词
D O I
10.1088/0022-3727/41/19/194006
中图分类号
O59 [应用物理学];
学科分类号
摘要
The coplanar microscale atmospheric pressure plasma jet (mu-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, similar to 15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (similar to 0.5%). Ground state atomic oxygen densities in the effluent up to 2 x 10(14) cm(-3) are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent's atomic oxygen density, then reaching a constant level for higher powers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Absolute atomic oxygen density profiles in the discharge core of a microscale atmospheric pressure plasma jet
    Knake, Nikolas
    Niemi, Kari
    Reuter, Stephan
    Schulz-von der Gathen, Volker
    Winter, Joerg
    APPLIED PHYSICS LETTERS, 2008, 93 (13)
  • [2] Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet
    Reuter, S.
    Niemi, K.
    Schulz-von der Gathen, V.
    Doebele, H. F.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (01):
  • [3] Absolute atomic hydrogen density measurements in an atmospheric pressure plasma jet: generation, transport and recombination from the active discharge region to the effluent
    Yue, Yuanfu
    Santosh, V. S.
    Kodenti, K.
    Bruggeman, Peter J.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (04):
  • [4] Influence of target surfaces on the atomic oxygen distribution in the effluent of a micro-scaled atmospheric pressure plasma jet
    Schroeder, D.
    Bahre, H.
    Knake, N.
    Winter, J.
    de los Arcos, T.
    Schulz-von der Gathen, V.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (02):
  • [5] Absolute ion density measurements in the afterglow of a radiofrequency atmospheric pressure plasma jet
    Jiang, Jingkai
    Bruggeman, Peter J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (15)
  • [6] Spatially resolved diagnostics on a microscale atmospheric pressure plasma jet
    Schulz-von der Gathen, V.
    Schaper, L.
    Knake, N.
    Reuter, S.
    Niemi, K.
    Gans, T.
    Winter, J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (19)
  • [7] Spatiotemporal behaviors of absolute density of atomic oxygen in a planar type of Ar/O2 non-equilibrium atmospheric-pressure plasma jet
    Jia, Fengdong
    Ishikawa, Kenji
    Takeda, Keigo
    Kano, Hiroyuki
    Kularatne, Jagath
    Kondo, Hiroki
    Sekine, Makoto
    Hori, Masaru
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (02):
  • [8] Microscale Atmospheric Pressure Plasma Jet as a Source for Plasma-Driven Biocatalysis
    Yayci, Abdulkadir
    Dirks, Tim
    Kogelheide, Friederike
    Alcalde, Miguel
    Hollmann, Frank
    Awakowicz, Peter
    Bandow, Julia E.
    CHEMCATCHEM, 2020, 12 (23) : 5893 - 5897
  • [9] Investigations on the Generation of Atomic Oxygen Inside a Capacitively Coupled Atmospheric Pressure Plasma Jet
    Knake, N.
    Schroeder, D.
    Winter, J.
    Schulz-von der Gathen, V.
    14TH INTERNATIONAL SYMPOSIUM ON LASER-AIDED PLASMA DIAGNOSTICS (LAPD14), 2010, 227
  • [10] Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar-H2O RF plasma jet in air
    Verreycken, Tiny
    Mensink, Rob
    Van Der Horst, Ruud
    Sadeghi, Nader
    Bruggeman, Peter J.
    Plasma Sources Science and Technology, 2013, 22 (05)