Integrability of infinite weighted sums of heavy-tailed i.i.d. random variables

被引:4
|
作者
Zerner, MPW [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
characteristic function; heavy tail; integrability; linear process; stationary distribution; sum of independent random variables;
D O I
10.1016/S0304-4149(02)00086-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the sum X of i.i.d. random variables Y-n, n greater than or equal to 0, with weights a(n), which decay exponentially fast to zero. For a smooth sublinear increasing function g, g(\Y-0\) has finite expectation if and only if the expectation of \X\g'(\X\) is finite. The proof uses characteristic functions. However, if g grows polynomially or exponentially fast, then the expectation of g(\Y-0\) is finite if and only if the expectation of g(\X\) is finite. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:81 / 94
页数:14
相关论文
共 50 条