Syntaxin 1 interacts with the LD subtype of voltage-gated Ca2+ channels in pancreatic β cells

被引:120
|
作者
Yang, SN
Larsson, O
Bränström, R
Bertorello, AM
Leibiger, B
Leibiger, IB
Moede, T
Köhler, M
Meister, B
Berggren, PO
机构
[1] Karolinska Hosp, Karolinska Inst, Rolf Luft Ctr Diabet Res, Dept Mol Med, S-17176 Stockholm, Sweden
[2] Karolinska Hosp, Karolinska Inst, Dept Neurosci, S-17176 Stockholm, Sweden
关键词
D O I
10.1073/pnas.96.18.10164
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interaction of syntaxin 1 with the alpha(1D) subunit of the voltage-gated L type Ca2+ channel was investigated in the pancreatic beta cell, Coexpression of the enhanced green fluorescent protein-linked alpha(1D) subunit with the enhanced blue fluorescent protein-linked syntaxin 1 and Western blot analysis together with subcellular fractionation demonstrated that the alpha(1D) subunit and syntaxin 1 were colocalized in the plasma membrane. Furthermore, the alpha(1D) subunit was coimmunoprecipitated efficiently by a polyclonal antibody against syntaxin 1, Syntaxin 1 also played a central role in the modulation of L type Ca2+ channel activity because there was a faster Ca2+ current run-down in cells incubated with antisyntaxin 1 compared with controls. In parallel, antisyntaxin 1 markedly reduced insulin release in both intact and permeabilized cells, subsequent to depolarization with K+ or exposure to high Ca2+, Exchanging Ca2+ for Ba2+ abolished the effect of antisyntaxin 1 on both Ca2+ channel activity and insulin exocytosis, Moreover, antisyntaxin 1 had no significant effects on Ca2+-independent insulin release trigged by hypertonic stimulation, This suggests that there is a structure-function relationship between the air, subunit of the L type Ca2+ channel and the exocytotic machinery in the pancreatic beta cell.
引用
收藏
页码:10164 / 10169
页数:6
相关论文
共 50 条
  • [1] NADPH as a putative regulator of voltage-gated Ca2+ channels in pancreatic beta cells
    Reinbothe, T. M.
    Fransson, U.
    Renstrom, E.
    DIABETOLOGIA, 2008, 51 : S196 - S196
  • [2] The β Subunit of Voltage-Gated Ca2+ Channels
    Buraei, Zafir
    Yang, Jian
    PHYSIOLOGICAL REVIEWS, 2010, 90 (04) : 1461 - 1506
  • [3] Targeting voltage-gated Ca2+ channels
    Striessnig, J
    LANCET, 2001, 357 (9264): : 1294 - 1294
  • [4] Voltage-gated Ca2+ channels in Type III Taste Cells
    Romanov, R. A.
    Yatzenko, Y. E.
    Kabanova, N. V.
    Bystrova, M. F.
    Kolesnikov, S. S.
    BIOLOGICHESKIE MEMBRANY, 2009, 26 (04): : 258 - 264
  • [5] Voltage-gated Ca2+ channels in type III taste cells
    Romanov R.A.
    Yatzenko Y.E.
    Kabanova N.V.
    Bystrova M.F.
    Kolesnikov S.S.
    Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2009, 3 (3) : 254 - 260
  • [6] Regulation of voltage-gated Ca2+ channels by lipids
    Roberts-Crowley, Mandy L.
    Mitra-Ganguli, Tora
    Liu, Liwang
    Rittenhouse, Ann R.
    CELL CALCIUM, 2009, 45 (06) : 589 - 601
  • [7] Structure and regulation of voltage-gated Ca2+ channels
    Catterall, WA
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 : 521 - 555
  • [8] Transcriptional regulation of voltage-gated Ca2+ channels
    Gonzalez-Ramirez, R.
    Felix, R.
    ACTA PHYSIOLOGICA, 2018, 222 (01)
  • [9] Genetics and pathology of voltage-gated Ca2+ channels
    Ophoff, RA
    Terwindt, GM
    Ferrari, MD
    Frants, RR
    HISTOLOGY AND HISTOPATHOLOGY, 1998, 13 (03) : 827 - 836
  • [10] Inhibition of voltage-gated Ca2+ channels by antazoline
    Milhaud, D
    Fagni, L
    Bockaert, J
    Lafon-Cazal, M
    NEUROREPORT, 2002, 13 (14) : 1711 - 1714