SPCM: Efficient semi-possibilistic c-means clustering algorithm

被引:0
|
作者
Mahfouz, Mohamed A. [1 ]
机构
[1] MSA Univ, Fac Comp Sci, 6th Of October, Egypt
关键词
Clustering algorithms; fuzzy clustering; possibilistic c-means; hybrid soft clustering; homomorphic encryption; DENSITY PEAKS; SEARCH;
D O I
10.3233/JIFS-213172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The required division and exponentiation operations needed per iteration for the possibilistic c-means (PCM) clustering algorithm complicate its implementation, especially on homomorphically-encrypted data. This paper presents a novel efficient soft clustering algorithm based on the possibilistic paradigm, termed SPCM. It aims at easing future applications of PCM to encrypted data. It reduces the required exponentiation and division operations at each iteration by restricting the membership values to an ordered set of discrete values in [0,1], resulting in a better performance in terms of runtime and several other performance indices. At each iteration, distances to the new clusters' centers are determined, then the distances are compared to the initially computed and dynamically updated range of values, that divide the entire range of distances associated with each cluster center into intervals (bins), to assign appropriate soft memberships to objects. The required number of comparisons is O(log the number of discretization levels). Thus, the computation of centers and memberships is greatly simplified during execution. Also, the use of discrete values for memberships allows soft modification (increment or decrement) of the soft memberships of identified outliers and core objects instead of rough modification (setting to zero or one) in related algorithms. Experimental results on synthetic and standard test data sets verified the efficiency and effectiveness of the proposed algorithm. The average percent of the achieved reduction in runtime is 35% and the average percent of the achieved increase in v-measure, adjusted mutual information, and adjusted rand index is 6% on five datasets compared to PCM. The larger the dataset, the higher the reduction in runtime. Also, SPCM achieved a comparable performance with less computational complexity compared to variants of related algorithms.
引用
收藏
页码:7227 / 7241
页数:15
相关论文
共 50 条
  • [1] Suppressed possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    Lan, Rong
    [J]. APPLIED SOFT COMPUTING, 2019, 80 : 845 - 872
  • [2] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [3] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [4] An enhanced possibilistic C-Means clustering algorithm EPCM
    Xie, Zhenping
    Wang, Shitong
    Chung, F. L.
    [J]. SOFT COMPUTING, 2008, 12 (06) : 593 - 611
  • [5] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [6] Generalized Adaptive Possibilistic C-Means Clustering Algorithm
    Xenaki, Spyridoula
    Koutroumbas, Konstantinos
    Rontogiannis, Athanasios
    [J]. 10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [7] An enhanced possibilistic C-Means clustering algorithm EPCM
    Zhenping Xie
    Shitong Wang
    F. L. Chung
    [J]. Soft Computing, 2008, 12 : 593 - 611
  • [8] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [9] Alternative fuzzy-possibilistic c-means clustering algorithm
    Wu, Xiao-Hong
    Wu, Bin
    Zhou, Jian-Jiang
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 11 - 14
  • [10] Cutset-type possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    [J]. APPLIED SOFT COMPUTING, 2018, 64 : 401 - 422