Improving gene regulatory network inference using network topology information

被引:21
|
作者
Nair, Ajay [1 ,2 ,3 ]
Chetty, Madhu [4 ]
Wangikar, Pramod P. [2 ,5 ,6 ]
机构
[1] Indian Inst Technol, IITB Monash Res Acad, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
[3] Monash Univ, Fac Informat Technol, Melbourne, Vic 3004, Australia
[4] Federat Univ, Fac Sci & Technol, Mt Helen, Vic, Australia
[5] Indian Inst Technol, DBT Pan IIT Ctr Bioenergy, Mumbai 400076, Maharashtra, India
[6] Indian Inst Technol, Wadhwani Res Ctr Bioengn, Mumbai 400076, Maharashtra, India
关键词
LEARNING BAYESIAN NETWORKS; MUTUAL INFORMATION; CONSERVATION; BIOLOGY; SYSTEMS;
D O I
10.1039/c5mb00122f
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inferring the gene regulatory network (GRN) structure from data is an important problem in computational biology. However, it is a computationally complex problem and approximate methods such as heuristic search techniques, restriction of the maximum-number-of-parents (maxP) for a gene, or an optimal search under special conditions are required. The limitations of a heuristic search are well known but literature on the detailed analysis of the widely used maxP technique is lacking. The optimal search methods require large computational time. We report the theoretical analysis and experimental results of the strengths and limitations of the maxP technique. Further, using an optimal search method, we combine the strengths of the maxP technique and the known GRN topology to propose two novel algorithms. These algorithms are implemented in a Bayesian network framework and tested on biological, realistic, and in silico networks of different sizes and topologies. They overcome the limitations of the maxP technique and show superior computational speed when compared to the current optimal search algorithms.
引用
下载
收藏
页码:2449 / 2463
页数:15
相关论文
共 50 条
  • [1] Improving gene regulatory network inference and assessment: The importance of using network structure
    Escorcia-Rodriguez, Juan M.
    Gaytan-Nunez, Estefani
    Hernandez-Benitez, Ericka M.
    Zorro-Aranda, Andrea
    Tello-Palencia, Marco A.
    Freyre-Gonzalez, Julio A.
    FRONTIERS IN GENETICS, 2023, 14
  • [2] Network Topology Inference With Partial Information
    Holbert, Brett
    Tati, Srikar
    Silvestri, Simone
    La Porta, Thomas F.
    Swami, Ananthram
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2015, 12 (03): : 406 - 419
  • [3] Gene Regulatory Network Inference incorporating Maximal Information Coefficient into Minimal Redundancy Network
    Akhand, M. A. H.
    Nandi, R. N.
    Amran, S. M.
    Murase, K.
    2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION COMMUNICATION TECHNOLOGY (ICEEICT 2015), 2015,
  • [4] Improving Gene Regulatory Network Inference by Incorporating Rates of Transcriptional Changes
    Jigar S. Desai
    Ryan C. Sartor
    Lovely Mae Lawas
    S. V. Krishna Jagadish
    Colleen J. Doherty
    Scientific Reports, 7
  • [5] Improving Gene Regulatory Network Inference by Incorporating Rates of Transcriptional Changes
    Desai, Jigar S.
    Sartor, Ryan C.
    Lawas, Lovely Mae
    Jagadish, S. V. Krishna
    Doherty, Colleen J.
    SCIENTIFIC REPORTS, 2017, 7
  • [6] TIGRNCRN: Trustful inference of gene regulatory network using clustering and refining the network
    Pirgazi, Jamshid
    Khanteymoori, Ali Reza
    Jalilkhani, Maryam
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2019, 17 (03)
  • [7] Dissecting and improving gene regulatory network inference using single-cell transcriptome data
    Xue, Lingfeng
    Wu, Yan
    Lin, Yihan
    GENOME RESEARCH, 2023, 33 (09) : 1609 - 1621
  • [8] Network Topology Inference with Partial Path Information
    Holbert, B.
    Tati, S.
    Silvestri, S.
    La Porta, T.
    Swami, A.
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2015, : 796 - 802
  • [9] Using additive expression programming for gene regulatory network inference
    Yang, Bin
    International Journal of Hybrid Information Technology, 2015, 8 (07): : 225 - 238
  • [10] Network topology inference using information cascades with limited statistical knowledge
    Ji, Feng
    Tang, Wenchang
    Tay, Wee Peng
    Chong, Edwin K. P.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (02) : 327 - 360