A Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilation

被引:7
|
作者
Attia, Ahmed [1 ]
Rao, Vishwas [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Sci Computat Lab, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
data assimilation; variational methods; ensemble smoothers; Markov chain; Hybrid Monte Carlo; ENSEMBLE KALMAN FILTER; MODEL; FRAMEWORK; 4D-VAR;
D O I
10.1002/fld.4259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper constructs an ensemble-based sampling smoother for four-dimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and nonlinear model dynamics and observation operators. Unlike the four-dimensional variational method, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemble-based smoothing methods. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:90 / 112
页数:23
相关论文
共 50 条
  • [1] The reduced-order hybrid Monte Carlo sampling smoother
    Attia, Ahmed
    Stefanescu, Razvan
    Sandu, Adrian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (01) : 28 - 51
  • [2] A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation
    Attia, Ahmed
    Sandu, Adrian
    AIMS GEOSCIENCES, 2015, 1 (01): : 41 - 78
  • [3] On the smoothness constraints for four-dimensional data assimilation
    Lin, CL
    Chai, TF
    Sun, JZ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (02) : 430 - 453
  • [4] Balance dynamics and four-dimensional data assimilation
    Neef, LJ
    Shepherd, TG
    Polavarapu, SM
    14TH CONFERENCE ON ATMOSPHERIC AND OCEANIC FLUID DYNAMICS, 2003, : 11 - 15
  • [5] Four-dimensional data assimilation and balanced dynamics
    Neef, Lisa J.
    Polavarapu, Saroja M.
    Shepherd, Theodore G.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2006, 63 (07) : 1840 - 1858
  • [6] Approximate importance sampling Monte Carlo for data assimilation
    Berliner, L. Mark
    Wikle, Christopher K.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 37 - 49
  • [7] ON SAMPLING OF MONTE-CARLO DATA AND DISORDERED-SYSTEMS
    VANHEMMEN, JL
    MORGENSTERN, I
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (20): : 4353 - 4365
  • [8] A Sampling Approach for Four Dimensional Data Assimilation
    Attia, Ahmed
    Rao, Vishwas
    Sandu, Adrian
    DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014, 2015, 8964 : 215 - 226
  • [9] HYBRID MONTE-CARLO
    DUANE, S
    KENNEDY, AD
    PENDLETON, BJ
    ROWETH, D
    PHYSICS LETTERS B, 1987, 195 (02) : 216 - 222
  • [10] Weak constraints in four-dimensional variational data assimilation
    Watkinson, Laura R.
    Lawless, Amos S.
    Nichols, Nancy K.
    Roulstone, Ian
    METEOROLOGISCHE ZEITSCHRIFT, 2007, 16 (06) : 767 - 776