Control of the Geometric Phase and Nonequivalence between Geometric-Phase Definitions in the Adiabatic Limit

被引:14
|
作者
Zhu, Xiaosong [1 ,2 ,3 ,4 ]
Lu, Peixiang [2 ,3 ,4 ]
Lein, Manfred [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[4] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-FREQUENCY THEORY; TOPOLOGICAL PHASE; BERRYS PHASE; STATES; IONIZATION; PROOF;
D O I
10.1103/PhysRevLett.128.030401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If the time evolution of a quantum state leads back to the initial state, a geometric phase is accumulated that is known as the Berry phase for adiabatic evolution or as the Aharonov-Anandan (AA) phase for nonadiabatic evolution. We evaluate these geometric phases using Floquet theory for systems in time-dependent external fields with a focus on paths leading through a degeneracy of the eigenenergies. Contrary to expectations, the low-frequency limits of the two phases do not always coincide. This happens as the degeneracy leads to a slow convergence of the quantum states to adiabaticity, resulting in a nonzero finite or divergent contribution to the AA phase. Steering the system adiabatically through a degeneracy provides control over the geometric phase as it can cause a pi shift of the Berry phase. On the other hand, we revisit an example of degeneracy crossing proposed by AA. We find that, at suitable driving frequencies, both geometric-phase definitions give the same result and the dynamical phase is zero due to the symmetry of time evolution about the point of degeneracy, providing an advantageous setup for manipulation of quantum states.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A GEOMETRIC-PHASE INTERFEROMETER
    HARIHARAN, P
    ROY, M
    JOURNAL OF MODERN OPTICS, 1992, 39 (09) : 1811 - 1815
  • [2] Geometric-phase polarimetry
    Garza-Soto, Luis
    De-Luna-Pamanes, Alejandra
    Melendez-Montoya, Israel
    Sanchez-Soria, Natalia
    Gonzalez-Hernandez, Diana
    Lopez-Mago, Dorilian
    JOURNAL OF OPTICS, 2020, 22 (12)
  • [3] Binary geometric-phase holograms
    Warriner, N. Zane
    Escuti, Michael J.
    OPTICS EXPRESS, 2023, 31 (02) : 2689 - 2699
  • [4] Geometric-phase atom optics and interferometry
    Zygelman, B.
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [5] GEOMETRIC-PHASE EFFECTS IN LASER DYNAMICS
    TORONOV, VY
    DERBOV, V
    PHYSICAL REVIEW A, 1994, 50 (01): : 878 - 881
  • [6] Geometric-phase intraocular lenses with multifocality
    Seungmin Lee
    Gayeon Park
    Seonho Kim
    Yeonghwa Ryu
    Jae Woong Yoon
    Ho Sik Hwang
    In Seok Song
    Chang Sun Lee
    Seok Ho Song
    Light: Science & Applications, 11
  • [7] Geometric-phase intraocular lenses with multifocality
    Lee, Seungmin
    Park, Gayeon
    Kim, Seonho
    Ryu, Yeonghwa
    Yoon, Jae Woong
    Hwang, Ho Sik
    Song, In Seok
    Lee, Chang Sun
    Song, Seok Ho
    LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [8] Geometric-Phase Metasurfaces: from Physics to Applications
    Hu Zhong
    Xu Tao
    Tang Rong
    Guo Huijie
    Xiao Shiyi
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (20)
  • [9] Dynamics of the geometric phase in the adiabatic limit of a quench induced quantum phase transition
    Basu, B.
    PHYSICS LETTERS A, 2010, 374 (10) : 1205 - 1208
  • [10] Multifunctional interleaved geometric-phase dielectric metasurfaces
    Maguid E.
    Yulevich I.
    Yannai M.
    Kleiner V.
    Brongersma M.L.
    Hasman E.
    Light Sci. Appl., 8