Vexillary degeneracy loci classes in K-theory and algebraic cobordism

被引:8
|
作者
Hudson, Thomas [1 ]
Matsumura, Tomoo [2 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Informat, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
关键词
SCHUBERT POLYNOMIALS; GYSIN-HOMOMORPHISM; GROTHENDIECK RING; FORMULA;
D O I
10.1016/j.ejc.2018.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove determinantal formulas for the K-theory classes of the structure sheaves of degeneracy loci associated to vexillary permutations in type A. As a consequence we obtain determinantal formulas for Lascoux-Schiltzenberger's double Grothendieck polynomials associated to vexillary permutations. We also prove a generalization of the formula in algebraic cobordism. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 50 条
  • [1] ALGEBRAIC COBORDISM AND K-THEORY
    SNAITH, VP
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 21 (221) : 1 - 152
  • [2] Degeneracy loci classes in K-theory - determinantal and Pfaffian formula
    Hudson, Thomas
    Ikeda, Takeshi
    Matsumura, Tomoo
    Naruse, Hiroshi
    ADVANCES IN MATHEMATICS, 2017, 320 : 115 - 156
  • [3] ON THE MOTIVIC SPECTRA REPRESENTING ALGEBRAIC COBORDISM AND ALGEBRAIC K-THEORY
    Gepner, David
    Snaith, Victor
    DOCUMENTA MATHEMATICA, 2009, 14 : 359 - 396
  • [4] On the Relation of Symplectic Algebraic Cobordism to Hermitian K-Theory
    I. A. Panin
    C. Walter
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 162 - 173
  • [5] On the Relation of Symplectic Algebraic Cobordism to Hermitian K-Theory
    Panin, I. A.
    Walter, C.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (01) : 162 - 173
  • [6] THE CHARACTERISTIC CLASSES IN ALGEBRAIC K-THEORY
    ZHURAEV, YI
    MISHCHENKO, AS
    SOLOVIEV, YP
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1986, (01): : 75 - 76
  • [7] ALGEBRAIC COBORDISM AND A CONNER-FLOYD ISOMORPHISM FOR ALGEBRAIC K-THEORY
    Annala, Toni
    Hoyois, Marc
    Iwasa, Ryomei
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 38 (01) : 243 - 289
  • [8] On the relation of Voevodsky’s algebraic cobordism to Quillen’s K-theory
    Ivan Panin
    Konstantin Pimenov
    Oliver Röndigs
    Inventiones mathematicae, 2009, 175 : 435 - 451
  • [9] On the relation of Voevodsky's algebraic cobordism to Quillen's K-theory
    Panin, Ivan
    Pimenov, Konstantin
    Roendigs, Oliver
    INVENTIONES MATHEMATICAE, 2009, 175 (02) : 435 - 451
  • [10] K-theoretic Chern class formulas for vexillary degeneracy loci
    Anderson, David
    ADVANCES IN MATHEMATICS, 2019, 350 : 440 - 485