Benchmark of a self-consistent dynamic 1D divertor model DIV1D using the 2D SOLPS-ITER code

被引:0
|
作者
Derks, G. L. [1 ,2 ,3 ]
Frankemolle, J. P. K. W. [1 ,3 ]
Koenders, J. T. W. [1 ,2 ]
van Berkel, M. [1 ]
Reimerdes, H. [4 ]
Wensing, M. [4 ]
Westerhof, E. [1 ]
机构
[1] DIFFER Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Control Syst Technol, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Sci & Technol Nucl Fus, Eindhoven, Netherlands
[4] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
dynamic; detachment; simulation; STABILITY;
D O I
10.1088/1361-6587/ac9dbd
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas background outside the divertor leg. We outline a 1D mapping procedure for static 2D SOLPS-ITER simulations of divertor plasmas in the Tokamak a Configuration Variable, which can be used to benchmark 1D codes. For DIV1D good agreement is found for the most important divertor plasma quantities along the leg (e.g., densities temperature, heat flux, and velocity) both in a qualitative and quantitative sense. In addition, the comparison with SOLPS-ITER demonstrates that DIV1D self-consistently captures the evolution of divertor plasma quantities in the main heat flux channel as a function of the upstream plasma density in a scan from 2 to 3 x 10(19)m(-3). The agreement is ascribed to the unique account of cross-field transport in DIV1D with an effective flux expansion and the interaction with an external neutral gas background.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Multi-machine benchmark of the self-consistent 1D scrape-off layer model DIV1D from stagnation point to target with SOLPS-ITER
    Derks, G. L.
    Westerhof, E.
    van Berkel, M.
    Jenneskens, J. H.
    Koenders, J. T. W.
    Mijin, S.
    Moulton, D.
    Reimerdes, H.
    Wu, H.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (05)
  • [2] Modeling deep slot divertor concepts at DIII-D using SOLPS-ITER with drifts
    Maurizio, R.
    Leonard, A. W.
    Mclean, A. G.
    Shafer, M. W.
    Stangeby, P. C.
    Thomas, D.
    Yu, J. H.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2023, 34
  • [3] Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data
    Leandro, J.
    Djordjevic, S.
    Chen, A. S.
    Savic, D. A.
    Stanic, M.
    [J]. WATER SCIENCE AND TECHNOLOGY, 2011, 64 (05) : 1016 - 1024
  • [4] Self-consistent analysis of arbitrary 1D SAW transducers
    Koskela, J
    Fagerholm, J
    Morgan, DP
    Salomaa, MM
    [J]. 1996 IEEE ULTRASONICS SYMPOSIUM, PROCEEDINGS, VOLS 1 AND 2, 1996, : 135 - 138
  • [5] ANHARMONIC SELF-CONSISTENT THEORY OF CRYSTALS .1. A 1D QUARTIC CRYSTAL MODEL
    SOULAYMAN, SS
    MARTI, CC
    GUILPIN, CC
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1993, 48 (12): : 1182 - 1192
  • [6] 1D to 2D Self Assembly of Cyclic Peptides
    Insua, Ignacio
    Montenegro, Javier
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (01) : 300 - 307
  • [7] Investigation of radial heat conduction with 1D self-consistent model in helicon plasmas
    田滨
    Mario MERINO
    万杰
    胡远
    曹勇
    [J]. Plasma Science and Technology, 2023, 25 (01) : 34 - 48
  • [8] Investigation of radial heat conduction with 1D self-consistent model in helicon plasmas
    Tian, Bin
    Merino, Mario
    Wan, Jie
    Hu, Yuan
    Cao, Yong
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (01)
  • [9] Investigation of radial heat conduction with 1D self-consistent model in helicon plasmas
    田滨
    Mario MERINO
    万杰
    胡远
    曹勇
    [J]. Plasma Science and Technology, 2023, (01) : 34 - 48
  • [10] A consistent 2D/1D approximation to the 3D neutron transport equation
    Kelley, Blake W.
    Larsen, Edward W.
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2015, 295 : 598 - 614