A chance constrained optimization approach for resource unconstrained project scheduling with uncertainty in activity execution intensity

被引:14
|
作者
Bianco, Lucio [1 ]
Caramia, Massimiliano [1 ]
Giordani, Stefano [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Impresa, Via Politecn 1, I-00133 Rome, Italy
关键词
Project scheduling; Chance constrained optimization; PERT; TIME; FORMULATION;
D O I
10.1016/j.cie.2018.11.053
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the problem of scheduling project activities with precedence constraints and unlimited resources. The latter problem, with the objective of minimizing the completion time of the project and deterministic activity durations, is known to be polynomially solvable. In the case of stochastic durations, the objective becomes to determine the project makespan distribution which is a #P complete problem. The most common technique used in this case is PERT. However, it is known that PERT tends to underestimate the expected makespan of the project. In our work, we try to overcome this shortcoming by considering a stochastic formulation of the problem, exploiting the activity execution intensity as a stochastic variable, and a chance constrained optimization approach. The main hypotheses under which our model works are essentially two: one is to have a sufficiently large time horizon for the project and the second, differently to what happens for the durations of the activities in the PERT model, is to assume a Beta probability density function for the activity execution intensity variables. The first hypothesis appears to be realistic since, when time horizon is large, stochastic factors tend to come into play in every decision problems; the second hypothesis, is realistic as well, since a minimum and a maximum value exist for the stochastic variables used in our model. Experimental results and a comparison with the PERT model and a Monte Carlo simulation are presented.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 50 条
  • [1] An Uncertainty Tolerant Approach For Stochastic Resource Constrained Project Scheduling Problems
    Chakrabortty, Ripon K.
    Ryan, Michael J.
    2019 IEEE TECHNOLOGY & ENGINEERING MANAGEMENT CONFERENCE (TEMSCON), 2019,
  • [2] Resource Unconstrained and Constrained Project Scheduling Problems and Practices in a Multiproject Environment
    Kannimuthu, Marimuthu
    Ekambaram, Palaneeswaran
    Raphael, Benny
    Kuppuswamy, Ananthanarayanan
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [3] A heuristic approach for resource constrained project scheduling with uncertain activity durations
    Bruni, M. E.
    Beraldi, P.
    Guerriero, F.
    Pinto, E.
    COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (09) : 1305 - 1318
  • [4] A practical approach to resource - constrained project scheduling
    John-Paris Pantouvakis
    Odysseus G. Manoliadis
    Operational Research, 2006, 6 (3) : 299 - 309
  • [5] Credibility-based chance-constrained multimode resource-constrained project scheduling problem under fuzzy uncertainty
    Liu, Huiran
    Fang, Zhiming
    Li, Renjie
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 171
  • [6] Robust optimization for resource-constrained project scheduling with uncertain activity durations
    Christian Artigues
    Roel Leus
    Fabrice Talla Nobibon
    Flexible Services and Manufacturing Journal, 2013, 25 : 175 - 205
  • [7] Robust optimization for resource-constrained project scheduling with uncertain activity durations
    Artigues, Christian
    Leus, Roel
    Nobibon, Fabrice Talla
    FLEXIBLE SERVICES AND MANUFACTURING JOURNAL, 2013, 25 (1-2) : 175 - 205
  • [8] Robust optimization for resource-constrained project scheduling with uncertain activity durations
    Leus, R.
    Artigues, C.
    Nobibon, F. Talla
    2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2011, : 101 - 105
  • [9] Dynamic Optimization of the Multi-Skilled Resource-Constrained Project Scheduling Problem with Uncertainty in Resource Availability
    Wang, Min
    Liu, Guoshan
    Lin, Xinyu
    MATHEMATICS, 2022, 10 (17)
  • [10] Resource-constrained project scheduling problem with multiple execution modes and fuzzy/crisp activity durations
    Atli, Omer
    Kahraman, Cengiz
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (04) : 2001 - 2020