Li4Ti5O12/graphene nanostructure for lithium storage with high-rate performance

被引:31
|
作者
Ri, Song Gyun [1 ]
Zhan, Liang [2 ]
Wang, Yun [2 ]
Zhou, Lihui [1 ]
Hu, Jun [1 ]
Liu, Honglai [1 ]
机构
[1] E China Univ Sci & Technol, Dept Chem, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, Dept Chem Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium titanate; Graphene; Ionic liquid; Anode materials; Lithium ion battery; CARBON-COATED LI4TI5O12; RATE ELECTRODE MATERIAL; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; ION; GRAPHENE; COMPOSITE; BATTERIES; SHEETS;
D O I
10.1016/j.electacta.2013.07.059
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nano-crystalline Li4Ti5O12 with an average size of 18 nm was in situ grown on graphene sheets using ionic liquid of C12H23ClN2 [Omirn]Cl as the exfoliated agent. Such unique nanostructure provides a high electrode/electrolyte area for the electron transport and the nanosized Li4Ti5O12 leads to a short path for the lithium ion transfer. When used as an anode material for lithium-ion battery, the Li4Ti5O12/graphene nanostructure exhibits excellent reversibility (159 mAh g(-1) at 0.5 C after 100 cycles) and high-rate performance (162 mAhg(-1) at 0.2 C, 148.5 mAhg(-1) at 20 C). Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:389 / 394
页数:6
相关论文
共 50 条
  • [1] Oxygen Deficient Li4Ti5O12 for High-rate Lithium Storage
    Wen, Lei
    Liu, Gang
    Liu, Guang-Yin
    Liu, Guo-qiang
    Li, Feng
    Cheng, Hui-Ming
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2012, 59 (10) : 1201 - 1205
  • [2] Li4Ti5O12 on Graphene for High Rate Lithium Ion Batteries
    Wen, Lei
    Liang, Ji
    Liu, Cheng-Ming
    Chen, Jing
    Huang, Quan-guo
    Luo, Hong-ze
    Li, Feng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) : A2951 - A2955
  • [3] Interfacial Adsorption and Redox Coupling of Li4Ti5O12 with Nanographene for High-Rate Lithium Storage
    Bae, Seongjun
    Nam, Inho
    Park, Soomin
    Yoo, Young Geun
    Yu, Sungju
    Lee, Jong Min
    Han, Jeong Woo
    Yi, Jongheop
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) : 16565 - 16572
  • [4] Highly porous Li4Ti5O12 films as high-rate electrodes for fast lithium ion storage
    Pan, Nian
    Xiao, Anguo
    Wang, Feifei
    Ding, Xiang
    Pan, Guoxiang
    Xia, Xinhui
    MATERIALS TECHNOLOGY, 2020, 35 (9-10) : 635 - 641
  • [5] Li4Ti5O12/reduced graphene oxide composite as a high-rate anode material for lithium ion batteries
    Cao, Ning
    Wen, Lina
    Song, Zhonghai
    Meng, Wei
    Qin, Xue
    ELECTROCHIMICA ACTA, 2016, 209 : 235 - 243
  • [6] High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries
    Liu, Hai-ping
    Wen, Guang-wu
    Bi, Si-fu
    Wang, Chun-yu
    Hao, Jing-min
    Gao, Peng
    ELECTROCHIMICA ACTA, 2016, 192 : 38 - 44
  • [7] Ultrathin [110]-Confined Li4Ti5O12 Nanoflakes for High Rate Lithium Storage
    Fu, Shuting
    Yu, Xuefang
    Wu, Qili
    Yang, Xianfeng
    Liu, Zheng
    Li, Xiaohui
    He, Shiman
    Wang, Da
    Li, Yanchun
    Tong, Shengfu
    Wu, Mingmei
    ADVANCED ENERGY MATERIALS, 2021, 11 (22)
  • [8] The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries
    Huang, Shahua
    Wen, Zhaoyin
    Lin, Bin
    Han, Jinduo
    Xu, Xiaogang
    Journal of Alloys and Compounds, 2008, 457 (1-2): : 400 - 403
  • [9] Effect of primary crystallite size on the high-rate performance of Li4Ti5O12 microspheres
    Zhao, Shuo
    Ka, Ou
    Xian, Xiaochao
    Sun, Leiming
    Wang, Jing
    ELECTROCHIMICA ACTA, 2016, 206 : 17 - 25
  • [10] Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery
    Fang, Wei
    Zuo, Pengjian
    Ma, Yulin
    Cheng, Xinqun
    Liao, Lixia
    Yin, Geping
    ELECTROCHIMICA ACTA, 2013, 94 : 294 - 299