PREDICTING OVERALL SURVIVAL OF GLIOBLASTOMA PATIENTS ON MULTI-INSTITUTIONAL HISTOPATHOLOGY STAINED SLIDES USING DEEP LEARNING AND POPULATION-BASED NORMALIZATION

被引:0
|
作者
Hao, Jie [1 ]
Agraz, Jose [1 ]
Grenko, Caleb [1 ]
Park, Ji Won [1 ]
Viaene, Angela [1 ]
Nasrallah, Maclean [1 ]
Kim, Dokyoon [1 ]
Bakas, Spyridon [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
NIMG-09
引用
收藏
页码:148 / 148
页数:1
相关论文
共 50 条
  • [1] A MULTIMODAL DEEP LEARNING MODEL FOR PREDICTING OVERALL SURVIVAL IN GLIOBLASTOMA PATIENTS
    Faghani, Shahriar
    Moassefi, Mana
    Conte, Gian Marco
    Erickson, Bradley
    NEURO-ONCOLOGY, 2022, 24 : 174 - 174
  • [2] PREDICTING OVERALL SURVIVAL IN GLIOBLASTOMA USING HISTOPATHOLOGY VIA AN END-TO-END DEEP LEARNING PIPELINE: A LARGE MULTI-COHORT STUDY
    Verma, Ruchika
    Cohen, Mark
    Toro, Paula
    Mokhtari, Mojgan
    Tiwari, Pallavi
    NEURO-ONCOLOGY, 2021, 23 : 143 - 143
  • [3] RADIOMICS-BASED MODEL PREDICTIVE OF OVERALL SURVIVAL IN GLIOBLASTOMA USING MULTI-INSTITUTIONAL PREOPERATIVE MRI SCANS
    Kowalchuk, Roman
    Conte, Gian Marco
    Crompton, David
    Cabreja, Ricardo Domingo
    Vega, Carlos Perez
    Moassefi, Mana
    Faghani, Shahriar
    Khosravi, Bardia
    Vora, Sujay
    Erickson, Bradley
    Trifiletti, Daniel
    NEURO-ONCOLOGY, 2022, 24 : 183 - 183
  • [4] Multi-Institutional Data Analysis of Radiomic Signature Set to Predict Overall Survival in Glioblastoma Patients
    Carver, E.
    Dai, Z.
    Snyder, J.
    Griffith, B.
    Poisson, L.
    Rogers, L.
    Wen, N.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [5] Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images
    Parita Sanghani
    Beng Ti Ang
    Nicolas Kon Kam King
    Hongliang Ren
    Medical & Biological Engineering & Computing, 2019, 57 : 1683 - 1691
  • [6] Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images
    Sanghani, Parita
    Ang, Beng Ti
    King, Nicolas Kon Kam
    Ren, Hongliang
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (08) : 1683 - 1691
  • [7] Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients
    Tang, Zhenyu
    Xu, Yuyun
    Jin, Lei
    Aibaidula, Abudumijiti
    Lu, Junfeng
    Jiao, Zhicheng
    Wu, Jinsong
    Zhang, Han
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 2100 - 2109
  • [8] Predicting overall and recurrence-free survival in patients with intrahepatic cholangiocarcinoma using the MEGNA score: A multi-institutional analysis
    Shaikh, Chanza F.
    Alaimo, Laura
    Moazzam, Zorays
    Endo, Yutaka
    Lima, Henrique A.
    Dawood, Zaiba
    Munir, Muhammad M.
    Pawlik, Timothy M.
    JOURNAL OF SURGICAL ONCOLOGY, 2023, 127 (01) : 73 - 80
  • [9] Predicting the survival of patients with glioblastoma using deep learning: a systematic review
    Habibi, Mohammad Amin
    Tajabadi, Zohreh
    Farsani, Ali Soltani
    Omid, Reza
    Tajabadi, Zahra
    Shobeiri, Parnian
    EGYPTIAN JOURNAL OF NEUROSURGERY, 2025, 40 (01)
  • [10] Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning
    Luo, Chenhua
    Yang, Jiyan
    Liu, Zhengzheng
    Jing, Di
    FRONTIERS IN NEUROLOGY, 2023, 14