Poincare-Lie algebra and noncommutative differential calculus

被引:1
|
作者
Güven, Z [1 ]
Can, Z [1 ]
Mir-Kasimov, R [1 ]
Oguz, O [1 ]
机构
[1] Yildiz Tech Univ, Dept Phys, Istanbul, Turkey
关键词
D O I
10.1134/1.1432915
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A realization of Poincare-Lie algebra in terms of noncommutative differential calculus was constructed. Corresponding relativistic quantum mechanics was considered. (C) 2001 MAIK "Nauka/Interperiodica".
引用
收藏
页码:2143 / 2145
页数:3
相关论文
共 50 条
  • [1] Poincaré-Lie algebra and noncommutative differential calculus
    Z. Güven
    Z. Can
    R. Mir-Kasimov
    O. Oĝuz
    Physics of Atomic Nuclei, 2001, 64 : 2143 - 2145
  • [2] Poincare-Lie algebra and relativistic phase space
    Andrade, MCB
    Santana, AE
    Vianna, JDM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4015 - 4024
  • [3] Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces
    Meljanac, Stjepan
    Kresic-Juric, Sasa
    Martinic, Tea
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (07)
  • [4] NONCOMMUTATIVE DIFFERENTIAL CALCULUS ON A QUADRATIC ALGEBRA
    Chakraborty, Partha Sarathi
    Guin, Satyajit
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (04): : 495 - 515
  • [5] Noncommutative differential calculus on a quadratic algebra
    Partha Sarathi Chakraborty
    Satyajit Guin
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 495 - 515
  • [6] LIE ALGEBRA EXTENSIONS OF POINCARE ALGEBRA
    GALINDO, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) : 768 - &
  • [7] Homology of Lie algebra of supersymmetries and of super Poincare Lie algebra
    Movshev, M. V.
    Schwarz, A.
    Xu, Renjun
    NUCLEAR PHYSICS B, 2012, 854 (02) : 483 - 503
  • [8] Noncommutative fields and actions of twisted Poincare algebra
    Chaichian, M.
    Kulish, P. P.
    Tureanu, A.
    Zhang, R. B.
    Zhang, Xiao
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
  • [9] DIFFERENTIAL-CALCULUS ON ISOQ(N), QUANTUM POINCARE ALGEBRA AND Q-GRAVITY
    CASTELLANI, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (02) : 383 - 404
  • [10] Tensor calculus in the free Lie algebra
    Patsourakos, A
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 45 (03) : 269 - 276