Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling

被引:40
|
作者
Song, YT [1 ]
Hou, TY
机构
[1] CALTECH, Jet Prop Lab, Earth & Space Sci Div, Pasadena, CA 91109 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家航空航天局;
关键词
generalized vertical coordinate system; non-Boussinesq; multiscale applications;
D O I
10.1016/j.ocemod.2005.01.001
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Two physical parameters are introduced into the basic ocean equations to generalize numerical ocean models for various vertical coordinate systems and their hybrid features. The two parameters are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara [Kasahara, A., 1974. Various vertical coordinate systems used for numerical weather prediction. Mon. Weather Rev. 102, 509-522], the Jacobian pressure gradient formulation of Song [Song, Y.T., 1998. A general pressure gradient formation for ocean models. Part I: Scheme design and diagnostic analysis. Mon. Weather Rev. 126 (12), 3213-3230], and a newly introduced parametric function that permits both Boussinesq (volume-conserving) and non-Boussinesq (mass-conserving) conditions. Based on this new formulation, a generalized modeling approach is proposed. Several representative oceanographic problems with different scales and characteristics-coastal canyon, seamount topography, non-Boussinesq Pacific Ocean with nested eastern Tropics, and a global ocean model-have been used to demonstrate the model's capabilities for multiscale applications. The inclusion of non-Boussinesq physics in the topography-following ocean model does not incur computational expense, but more faithfully represents satellite-observed ocean-bottom-pressure data. Such a generalized modeling approach is expected to benefit oceanographers in solving multiscale ocean-related problems by using various coordinate systems on the same numerical platform. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:298 / 332
页数:35
相关论文
共 50 条
  • [1] Including non-Boussinesq effects in Boussinesq ocean circulation models
    Lu, YY
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2001, 31 (06) : 1616 - 1622
  • [2] Modeling of natural convection with Smoothed Particle Hydrodynamics: Non-Boussinesq formulation
    Szewc, K.
    Pozorski, J.
    Taniere, A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (23-24) : 4807 - 4816
  • [3] Universal solutions for Boussinesq and non-Boussinesq plumes
    van den Bremer, T. S.
    Hunt, G. R.
    JOURNAL OF FLUID MECHANICS, 2010, 644 : 165 - 192
  • [4] On Boussinesq and non-Boussinesq starting forced plumes
    Ai, Jiaojian
    Law, Adrian Wing-Keung
    Yu, S. C. M.
    JOURNAL OF FLUID MECHANICS, 2006, 558 : 357 - 386
  • [5] Non-Boussinesq conjugate natural convection in a vertical annulus
    Reddy, P. Venkata
    Narasimham, G. S. V. L.
    Rao, S. V. Raghurama
    Johny, T.
    Kasiviswanathan, K. V.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (09) : 1230 - 1237
  • [6] Experimental non-Boussinesq fountains
    Mehaddi, Rabah
    Vauquelin, Olivier
    Candelier, Fabien
    JOURNAL OF FLUID MECHANICS, 2015, 784
  • [7] The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion
    de Szoeke, RA
    Samelson, RM
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2002, 32 (07) : 2194 - 2203
  • [8] On the hydraulics of Boussinesq and non-Boussinesq two-layer flows
    Lawrence, Gregory A.
    Journal of Fluid Mechanics, 1990, 215 : 457 - 480
  • [9] ON THE HYDRAULICS OF BOUSSINESQ AND NON-BOUSSINESQ 2-LAYER FLOWS
    LAWRENCE, GA
    JOURNAL OF FLUID MECHANICS, 1990, 215 : 457 - 480
  • [10] Boussinesq and non-Boussinesq turbulent plumes in a corner with applications to natural ventilation
    Li, Shuo
    Flynn, M. R.
    PHYSICAL REVIEW FLUIDS, 2021, 6 (05)