Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells

被引:20
|
作者
Deinega, Alexei [1 ]
John, Sajeev [1 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
基金
美国能源部; 加拿大自然科学与工程研究理事会;
关键词
Nanowires; Nanorods; Finite difference; Radial finite difference; SILICON;
D O I
10.1016/j.cpc.2012.05.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (I = 0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation. (C) 2012 Elsevier BM. All rights reserved.
引用
收藏
页码:2128 / 2135
页数:8
相关论文
共 50 条
  • [1] Positivity preserving discretization of time dependent semiconductor drift-diffusion equations
    Brunk, Markus
    Kvaerno, Anne
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1289 - 1301
  • [2] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Koprucki, Thomas
    Gaertner, Klaus
    OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (07) : 791 - 796
  • [3] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Koprucki, Thomas
    Gaertner, Klaus
    2012 12TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2012, : 103 - 104
  • [4] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Thomas Koprucki
    Klaus Gärtner
    Optical and Quantum Electronics, 2013, 45 : 791 - 796
  • [5] Comparative study of finite element formulations for the semiconductor drift-diffusion equations
    Trattles, JT
    Johnson, CM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (18) : 3405 - 3419
  • [6] ASYMPTOTIC BEHAVIOR OF THE DRIFT-DIFFUSION SEMICONDUCTOR EQUATIONS
    郭秀兰
    李开泰
    Acta Mathematica Scientia, 2004, (03) : 385 - 394
  • [7] Asymptotic behavior of the drift-diffusion semiconductor equations
    Fang, WF
    Ito, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) : 567 - 587
  • [8] Asymptotic behavior of the drift-diffusion semiconductor equations
    Guo, XL
    Li, KT
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 385 - 394
  • [9] Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method
    Sakowski, Konrad
    Marcinkowski, Leszek
    Strak, Pawel
    Kempisty, Pawel
    Krukowski, Stanislaw
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT II, 2016, 9574 : 391 - 400
  • [10] An existence of stationary solutions for the Drift-Diffusion Semiconductor equations
    Guo, XL
    Xing, JS
    Ling, H
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (04): : 521 - 529