Extreme value analysis of Munich air pollution data

被引:1
|
作者
Kuchenhoff, H [1 ]
Thamerus, M [1 ]
机构
[1] GSF FORSCHUNGSZENTRUM UMWELT & GESUNDHEIT, MEDIS, D-85764 OBERSCHLEISSHEIM, GERMANY
关键词
air pollution; extreme values; generalized extreme value distribution; generalized Pareto distribution; logistic regression;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present three different approaches to modelling extreme values of daily air pollution data. We fitted a generalized extreme value distribution to the monthly maxima of daily concentration measures. For the exceedances of a high threshold depending on the data, the parameters of the generalized Pareto distribution were estimated. Accounting for autocorrelation, clusters of exceedances were used. To obtain information about the relationship of the exceedance of the air quality standard and possible predictors we applied logistic regression. Results and their interpretation are given for daily average concentrations of ozone and nitrogen dioxide at two monitoring sites within the city of Munich.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 50 条
  • [1] Extreme Value Analysis of Istanbul Air Pollution Data
    Ercelebi, Selamet G.
    Toros, Hueseyin
    [J]. CLEAN-SOIL AIR WATER, 2009, 37 (02) : 122 - 131
  • [2] An application of a new extreme value distribution to air pollution data
    Hurairah, Ahmed
    Ibrahim, Noor Akma
    Bin Daud, Isa
    Haron, Kassim
    [J]. MANAGEMENT OF ENVIRONMENTAL QUALITY, 2005, 16 (01) : 17 - 25
  • [3] Extreme Value Analysis of NOx Air Pollution in the Winter Seaport of Varna
    Garbatov, Yordan
    Georgiev, Petar
    Fuchedzhieva, Ivet
    [J]. ATMOSPHERE, 2022, 13 (11)
  • [4] Extreme value analysis of air pollution data and their comparison between two large urban regions of South America
    Martins, Leila Droprinchinski
    Hei Wikuats, Caroline Fernanda
    Capucim, Mauricio Nonato
    de Almeida, Daniela S.
    da Costa, Silvano Cesar
    Albuquerque, Taciana
    Barreto Carvalho, Vanessa Silveira
    de Freitas, Edmilson Dias
    Andrade, Maria de Fatima
    Martins, Jorge Alberto
    [J]. WEATHER AND CLIMATE EXTREMES, 2017, 18 : 44 - 54
  • [5] Estimating extreme quantiles for distributions of air pollution data
    Sepp, T
    Sennewald, E
    Heller, WD
    [J]. GEFAHRSTOFFE REINHALTUNG DER LUFT, 1996, 56 (11): : 419 - 424
  • [6] Performance analysis of sensing-based extreme value models for urban air pollution peaks
    Barthwal, Anurag
    Acharya, Debopam
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (03) : 4149 - 4163
  • [7] Performance analysis of sensing-based extreme value models for urban air pollution peaks
    Anurag Barthwal
    Debopam Acharya
    [J]. Modeling Earth Systems and Environment, 2022, 8 : 4149 - 4163
  • [8] Nonparametric Estimation of the Dependence Function for a Multivariate Extreme Value Distribution: An Application to the Air Pollution Data in Tunisia
    Ayari, Samia
    Boutahar, Mohamed
    Trabelsi, Abdelwahed
    [J]. VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 1553 - +
  • [9] DATA ANALYSIS USING REGRESSION MODELS WITH TIME DEPENDENT AND EXTREME ERRORS: APPLICABLE TO AIR POLLUTION DATA
    Alimoradi, S.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2008, 32 (A4): : 275 - 281
  • [10] Fusion of air pollution data in the region of Munich, Germany, by the ICAROS NET platform
    Schäfer, K
    Harbusch, A
    Peicu, G
    Emeis, S
    Hoffmann, H
    Jahn, C
    Sarigiannis, D
    Gotti, A
    Soulakellis, N
    Sifakis, NI
    [J]. REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE IX, 2004, 5571 : 322 - 333