De novo sequencing and variant calling with nanopores using PoreSeq

被引:61
|
作者
Szalay, Tamas [1 ]
Golovchenko, Jene A. [1 ,2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
INDIVIDUAL DNA STRANDS; SINGLE; POLYMERASE; ALGORITHM; MOLECULES; READS;
D O I
10.1038/nbt.3360
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The accuracy of sequencing single DNA molecules with nanopores is continually improving, but de novo genome sequencing and assembly using only nanopore data remain challenging. Here we describe PoreSeq, an algorithm that identifies and corrects errors in nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage depth. The approach relies on modeling the possible sources of uncertainty that occur as DNA transits through the nanopore and finds the sequence that best explains multiple reads of the same region. PoreSeq increases nanopore sequencing read accuracy of M13 bacteriophage DNA from 85% to 99% at 100x coverage. We also use the algorithm to assemble Escherichia coli with 30x coverage and the lambda genome at a range of coverages from 3x to 50x. Additionally, we classify sequence variants at an order of magnitude lower coverage than is possible with existing methods.
引用
收藏
页码:1087 / +
页数:7
相关论文
共 50 条
  • [1] De novo sequencing and variant calling with nanopores using PoreSeq
    Tamas Szalay
    Jene A Golovchenko
    [J]. Nature Biotechnology, 2015, 33 : 1087 - 1091
  • [2] DeNovoCNN: a deep learning approach to de novo variant calling in next generation sequencing data
    Khazeeva, Gelana
    Sablauskas, Karolis
    van der Sanden, Bart
    Steyaert, Wouter
    Kwint, Michael
    Rots, Dmitrijs
    Hinne, Max
    van Gerven, Marcel
    Yntema, Helger
    Vissers, Lisenka
    Gilissen, Christian
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (17) : e97
  • [3] DeNovoCNN: A deep learning approach to de novo variant calling in next generation sequencing data
    Khazeeva, Gelana
    Sablauskas, Karolis
    Van der Sanden, Bart
    Steyaert, Wouter
    Kwint, Michael
    Rots, Dmitrijs
    Hinne, Max
    van Gerven, Marcel
    Yntema, Helger
    Vissers, Lisenka
    Gilissen, Christian
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 662 - 662
  • [4] HAT: de novo variant calling for highly accurate short-read and long-read sequencing data
    Ng, Jeffrey K.
    Turner, Tychele N.
    [J]. BIOINFORMATICS, 2024, 40 (01)
  • [5] Customized de novo mutation detection for any variant calling pipeline: SynthDNM
    Lian, Aojie
    Guevara, James
    Xia, Kun
    Sebat, Jonathan
    [J]. BIOINFORMATICS, 2021, 37 (20) : 3640 - 3641
  • [7] De novo design of transmembrane nanopores
    Dan Qiao
    Yuang Chen
    Haojing Tan
    Ruhong Zhou
    Jiandong Feng
    [J]. Science China(Chemistry) . , 2022, (11) - 2143+2046
  • [8] De novo design of transmembrane nanopores
    Dan Qiao
    Yuang Chen
    Haojing Tan
    Ruhong Zhou
    Jiandong Feng
    [J]. Science China Chemistry, 2022, 65 : 2122 - 2143
  • [9] Comparative Analysis for the Performance of Variant Calling Pipelines on Detecting the de novo Mutations in Humans
    Liang, Yu
    He, Li
    Zhao, Yiru
    Hao, Yinyi
    Zhou, Yifan
    Li, Menglong
    Li, Chuan
    Pu, Xuemei
    Wen, Zhining
    [J]. FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [10] De novo design of transmembrane nanopores
    Dan Qiao
    Yuang Chen
    Haojing Tan
    Ruhong Zhou
    Jiandong Feng
    [J]. Science China Chemistry, 2022, 65 (11) : 2122 - 2143