The Generalized Three-Connectivity of Two Kinds of Cayley Graphs

被引:1
|
作者
Zhao, Shu-Li [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
来源
COMPUTER JOURNAL | 2019年 / 62卷 / 01期
基金
中国国家自然科学基金;
关键词
generalized connectivity; fault-tolerance; Cayley graph; complete graph; wheel graph; CONDITIONAL CONNECTIVITY; TREES;
D O I
10.1093/computer_journal/bxy054
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Let S subset of V (G) and kappa(G)(S) denote the maximum number r of edge-disjoint trees T-1,T-2,...,T-r in G such that V(T-i) boolean AND (T-j) = S for any i, j is an element of {1,2,...,r} and i not equal j. For an integer k with 2 <= k <= n, the generalized k-connectivity of a graph G is defined as kappa(k)(G) = min {kappa(G)(S)vertical bar S subset of V (G) and vertical bar S vertical bar = k}. The generalized k-connectivity is a generalization of traditional connectivity. In this paper, we focus on the Cayley graph generated by complete graphs and the Cayley graph generated by wheel graphs, denoted by CTn and WG(n), respectively. We study the generalized 3-connectivity of the two kinds of graphs and show that kappa(3)(CTn) = n(n - 1)/2 - 1 and kappa(3)(WG(n)) = 2n - 3 for n >= 3.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [1] Neighbor Connectivity of Two Kinds of Cayley Graphs
    Yi-jie Shang
    Rong-xia Hao
    Mei-mei Gu
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 386 - 397
  • [2] Neighbor Connectivity of Two Kinds of Cayley Graphs
    Yi-jie SHANG
    Rong-xia HAO
    Mei-mei GU
    Acta Mathematicae Applicatae Sinica, 2018, 34 (02) : 386 - 397
  • [3] Neighbor Connectivity of Two Kinds of Cayley Graphs
    Shang, Yi-jie
    Hao, Rong-xia
    Gu, Mei-mei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (02): : 386 - 397
  • [4] CONNECTIVITY OF CAYLEY GRAPHS
    IMRICH, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (03) : 323 - 326
  • [5] SPLITTING GROUPS WITH CUBIC CAYLEY GRAPHS OF CONNECTIVITY TWO
    Miraftab, B.
    Stavropoulos, K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 947 - 953
  • [6] Two kinds of generalized connectivity of dual cubes
    Zhao, Shu-Li
    Hao, Rong-Xia
    Cheng, Eddie
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 306 - 316
  • [7] ON THE CONNECTIVITY OF CAYLEY COLOR GRAPHS
    HUANG Qiongxiang
    LIU Xin Department of Mathematics
    Journal of Systems Science & Complexity, 1993, (03) : 227 - 230
  • [8] Connectivity of addition Cayley graphs
    Grynkiewicz, David
    Lev, Vsevolod F.
    Serra, Oriol
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 202 - 217
  • [9] GENERALIZED CAYLEY-GRAPHS
    MARUSIC, D
    SCAPELLATO, R
    SALVI, NZ
    DISCRETE MATHEMATICS, 1992, 102 (03) : 279 - 285
  • [10] Isomorphisms of generalized Cayley graphs
    Yang, Xu
    Liu, Weijun
    Feng, Lihua
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (02) : 407 - 424