A Convolutional Gated Recurrent Neural Network for Epileptic Seizure Prediction

被引:21
|
作者
Affes, Abir [1 ]
Mdhaffar, Afef [1 ,2 ]
Triki, Chahnez [3 ]
Jmaiel, Mohamed [1 ,2 ]
Freisleben, Bernd [4 ]
机构
[1] Univ Sfax, ReDCAD Lab, ENIS, BP 1173, Sfax, Tunisia
[2] Digital Res Ctr Sfax, Sfax 3021, Tunisia
[3] Hosp Hedi Chaker, Dept Child Neurol, Sfax 3029, Tunisia
[4] Philipps Univ Marburg, Dept Math & Comp Sci, Marburg, Germany
关键词
Epilepsy; Elecroencephalogram; Spectrogram; STFT; CNN; GRU; Seizure prediction; INTERNATIONAL-LEAGUE; ILAE;
D O I
10.1007/978-3-030-32785-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a convolutional gated recurrent neural network (CGRNN) to predict epileptic seizures based on features extracted from EEG data that represent the temporal aspect and the frequency aspect of the signal. Using a dataset collected in the Children's Hospital of Boston, CGRNN can predict epileptic seizures between 35 min and 5 min in advance. Our experimental results indicate that the performance of CGRNN varies between patients. We achieve an average sensitivity of 89% and a mean accuracy of 75.6% for the patients in the data set, with a mean False Positive Rate (FPR) of 1.6 per hour.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [1] Epileptic Seizure Prediction with Recurrent Convolutional Neural Networks
    Ozcan, Ahmet Remzi
    Erturk, Sarp
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [2] Epileptic Seizure Prediction Based on Convolutional Recurrent Neural Network with Multi-Timescale
    Duan, Lijuan
    Hou, Jinze
    Qiao, Yuanhua
    Miao, Jun
    [J]. INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING, PT II, 2019, 11936 : 139 - 150
  • [3] A Convolutional Gated Recurrent Neural Network for Seizure Onset Localization
    Daoud, Hisham
    Bayoumi, Magdy
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2572 - 2576
  • [4] Convolutional Neural Networks for Epileptic Seizure Prediction
    Eberlein, Matthias
    Hildebrand, Raphael
    Tetzlaff, Ronald
    Hoffmann, Nico
    Kuhlmann, Levin
    Brinkmann, Benjamin
    Mueller, Jens
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2577 - 2582
  • [5] Deep Convolutional Bidirectional LSTM Recurrent Neural Network for Epileptic Seizure Detection
    Abdelhameed, Ahmed M.
    Daoud, Hisham G.
    Bayoumi, Magdy
    [J]. 2018 16TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2018, : 139 - 143
  • [6] HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals
    Bhadra, Rajdeep
    Singh, Pawan Kumar
    Mahmud, Mufti
    [J]. BRAIN INFORMATICS, 2024, 11 (01)
  • [7] Epileptic Seizure Prediction: A Multi-Scale Convolutional Neural Network Approach
    Hussein, Ramy
    Ward, Rabab
    [J]. 2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [8] Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural Network Architecture
    Hussein, Ramy
    Lee, Soojin
    Ward, Rabab
    McKeown, Martin J.
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5436 - 5443
  • [9] Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network
    Yu, Zuyi
    Nie, Weiwei
    Zhou, Weidong
    Xu, Fangzhou
    Yuan, Shasha
    Leng, Yan
    Yuan, Qi
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (05): : 3462 - 3476
  • [10] Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network
    Zuyi Yu
    Weiwei Nie
    Weidong Zhou
    Fangzhou Xu
    Shasha Yuan
    Yan Leng
    Qi Yuan
    [J]. The Journal of Supercomputing, 2020, 76 : 3462 - 3476