Progress in Quantum Cascade Lasers

被引:5
|
作者
Liu Fengqi [1 ,2 ]
Zhang Jinchuan [1 ]
Liu Junqi [1 ,2 ]
Zhuo Ning [1 ]
Wang Lijun [1 ,2 ]
Liu Shuman [1 ,2 ]
Zhai Shenqiang [1 ]
Liang Ping [1 ]
Hu Ying [1 ]
Wang Zhanguo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100019, Peoples R China
来源
关键词
lasers; quantum effect; tunneling; quantum cascade lasers; CONTINUOUS-WAVE OPERATION; HIGH-POWER; SEMICONDUCTOR; ARRAYS;
D O I
10.3788/CJL202047.0701007
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum cascade lasers (QCL) emission wavelength spans from infrared to terahertz (THz), lead to many applications such as pollution monitoring, industrial process control, medical diagnostics, narcotic drugs and biochemical dangerous goods sensitive detection, and free space optical communications. Invented in 1991 following many years of research on band-structure engineered semiconductors and devices grown by molecular beam epitaxy, this fundamentally new laser has rapidly advanced to a leading position among infrared and terahertz semiconductor lasers in terms of practical wavelength agility as well as power and temperature performance. In this paper, we review the the progresses in designing concept of QCL, expanding wavelength range, increasing output power, realizing broadly tunable single-mode operation, and enhancing the beam quality in sequence. Finally, we give the brief conclusion and possible outlook.
引用
收藏
页数:13
相关论文
共 52 条
  • [1] Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
    Bai, Y.
    Darvish, S. R.
    Slivken, S.
    Zhang, W.
    Evans, A.
    Nguyen, J.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (10)
  • [2] Room temperature quantum cascade lasers with 27% wall plug efficiency
    Bai, Y.
    Bandyopadhyay, N.
    Tsao, S.
    Slivken, S.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (18)
  • [3] Highly temperature insensitive quantum cascade lasers
    Bai, Y.
    Bandyopadhyay, N.
    Tsao, S.
    Selcuk, E.
    Slivken, S.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (25)
  • [4] Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency
    Bai, Y.
    Slivken, S.
    Darvish, S. R.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (02)
  • [5] High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers
    Bandyopadhyay, N.
    Slivken, S.
    Bai, Y.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [6] Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm
    Baranov, Alexei N.
    Bahriz, Michael
    Teissier, Roland
    [J]. OPTICS EXPRESS, 2016, 24 (16): : 18799 - 18806
  • [7] Continuous wave operation of a mid-infrared semiconductor laser at room temperature
    Beck, M
    Hofstetter, D
    Aellen, T
    Faist, J
    Oesterle, U
    Ilegems, M
    Gini, E
    Melchior, H
    [J]. SCIENCE, 2002, 295 (5553) : 301 - 305
  • [8] Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation
    Belkin, Mikhail A.
    Capasso, Federico
    Belyanin, Alexey
    Sivco, Deborah L.
    Cho, Alfred Y.
    Oakley, Douglas C.
    Vineis, Christopher J.
    Turner, George W.
    [J]. NATURE PHOTONICS, 2007, 1 (05) : 288 - 292
  • [9] Influence of the material parameters on quantum cascade devices
    Benveniste, E.
    Vasanelli, A.
    Delteil, A.
    Devenson, J.
    Teissier, R.
    Baranov, A.
    Andrews, A. M.
    Strasser, G.
    Sagnes, I.
    Sirtori, C.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (13)
  • [10] Quantum cascade lasers emitting near 2.6 μm
    Cathabard, O.
    Teissier, R.
    Devenson, J.
    Moreno, J. C.
    Baranov, A. N.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (14)