BRICseq Bridges Brain-wide Interregional Connectivity to Neural Activity and Gene Expression in Single Animals

被引:2
|
作者
Huang, Longwen [1 ]
Kebschull, Justus M. [1 ,2 ]
Furth, Daniel [1 ]
Musall, Simon [1 ]
Kaufman, Matthew T. [1 ,3 ,4 ]
Churchland, Anne K. [1 ]
Zador, Anthony M. [1 ]
机构
[1] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[2] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[3] Univ Chicago, Dept Organismal Biol & Anat, 1025 E 57Th St, Chicago, IL 60637 USA
[4] Univ Chicago, Grossman Inst Neurosci Quantitat Biol & Human Beh, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
NEURONAL-ACTIVITY; MOUSE-BRAIN; REVEALS; CONNECTOME; NETWORK; PROJECTIONS; MODULES; ANATOMY; VIRUS;
D O I
10.1016/j.cell.2020.05.029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Comprehensive analysis of neuronal networks requires brain-wide measurement of connectivity, activity, and gene expression. Although high-throughput methods are available for mapping brain-wide activity and transcriptomes, comparable methods for mapping region-to-region connectivity remain slow and expensive because they require averaging across hundreds of brains. Here we describe BRICseq (brain-wide individual animal connectome sequencing), which leverages DNA barcoding and sequencing to map connectivity from single individuals in a few weeks and at low cost. Applying BRICseq to the mouse neocortex, we find that region-to-region connectivity provides a simple bridge relating transcriptome to activity: the spatial expression patterns of a few genes predict region-to-region connectivity, and connectivity predicts activity correlations. We also exploited BRICseq to map the mutant BTBR mouse brain, which lacks a corpus callosum, and recapitulated its known connectopathies. BRICseq allows individual laboratories to compare how age, sex, environment, genetics, and species affect neuronal wiring and to integrate these with functional activity and gene expression.
引用
收藏
页码:177 / +
页数:39
相关论文
共 35 条
  • [1] BRICseq Bridges Brain-wide Interregional Connectivity to Neural Activity and Gene Expression in Single Animals (vol 182, pg 177, 2020)
    Huang, Longwen
    Kebschull, Justus M.
    Furth, Daniel
    Musall, Simon
    Kaufman, Matthew T.
    Churchland, Anne K.
    Zador, Anthony M.
    CELL, 2020, 183 (07) : 2040 - 2040
  • [2] Network Neuroscience Untethered: Brain-Wide Immediate Early Gene Expression for the Analysis of Functional Connectivity in Freely Behaving Animals
    Terstege, Dylan J. J.
    Epp, Jonathan R. R.
    BIOLOGY-BASEL, 2023, 12 (01):
  • [3] Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks
    Bienkowski, Michael S.
    Bowman, Ian
    Song, Monica Y.
    Gou, Lin
    Ard, Tyler
    Cotter, Kaelan
    Zhu, Muye
    Benavidez, Nora L.
    Yamashita, Seita
    Abu-Jaber, Jaspar
    Azam, Sana
    Lo, Darrick
    Foster, Nicholas N.
    Hintiryan, Houri
    Dong, Hong-Wei
    NATURE NEUROSCIENCE, 2018, 21 (11) : 1628 - +
  • [4] Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks
    Michael S. Bienkowski
    Ian Bowman
    Monica Y. Song
    Lin Gou
    Tyler Ard
    Kaelan Cotter
    Muye Zhu
    Nora L. Benavidez
    Seita Yamashita
    Jaspar Abu-Jaber
    Sana Azam
    Darrick Lo
    Nicholas N. Foster
    Houri Hintiryan
    Hong-Wei Dong
    Nature Neuroscience, 2018, 21 : 1628 - 1643
  • [5] Towards high-density recording of brain-wide neural activity
    Liang, Bo
    Ye, Xuesong
    SCIENCE CHINA-MATERIALS, 2018, 61 (03) : 432 - 434
  • [6] Towards high-density recording of brain-wide neural activity
    Bo Liang
    Xuesong Ye
    Science China Materials, 2018, 61 : 432 - 434
  • [7] Brain-wide neural activity underlying memory-guided movement
    Chen, Susu
    Liu, Yi
    Wang, Ziyue Aiden
    Colonell, Jennifer
    Liu, Liu D.
    Hou, Han
    Tien, Nai-Wen
    Wang, Tim
    Harris, Timothy
    Druckmann, Shaul
    Li, Nuo
    Svoboda, Karel
    CELL, 2024, 187 (03) : 676 - 691.e16
  • [8] Multiplexed subspaces route neural activity across brain-wide networks
    Camden J. MacDowell
    Alexandra Libby
    Caroline I. Jahn
    Sina Tafazoli
    Adel Ardalan
    Timothy J. Buschman
    Nature Communications, 16 (1)
  • [9] Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion
    Dunn, Timothy W.
    Mu, Yu
    Narayan, Sujatha
    Randlett, Owen
    Naumann, Eva A.
    Yang, Chao-Tsung
    Schier, Alexander F.
    Freeman, Jeremy
    Engert, Florian
    Ahrens, Misha B.
    ELIFE, 2016, 5
  • [10] Towards high-density recording of brain-wide neural activity
    Bo Liang
    Xuesong Ye
    Science China Materials, 2018, 61 (03) : 432 - 434