Frequent hedging under transaction costs and a nonlinear Fokker-Planck PDE

被引:0
|
作者
Grandits, P [1 ]
机构
[1] TU Wien, Inst Stat Wahrscheinlichkeitstheorie & Versicheru, A-1040 Vienna, Austria
关键词
hedging; transaction costs; nonlinear PDE;
D O I
10.1137/S0036139900367206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a commonly used model for hedging an option in markets with transaction costs. The hedging strategy in this model basically minimizes the variance of the portfolio in each time step. We show that the limiting ( number of revision intervals tending to infinity, while the level of transaction costs remains constant) PDE, governing the transaction costs, is a well-known nonlinear Fokker-Planck equation. We examine its behavior in detail, thereby obtaining that the transaction costs in this model remain finite if the size of the hedging interval tends to zero. In addition, we compare the model with a utility-based approach.
引用
收藏
页码:541 / 562
页数:22
相关论文
共 50 条
  • [1] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [2] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [3] FOKKER-PLANCK EQUATION APPLIED TO NONLINEAR SYSTEMS
    KRISTIANSSON, L
    [J]. ERICSSON TECHNICS, 1968, 24 (03): : 161 - +
  • [4] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [5] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    [J]. PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [6] Numerical method for the nonlinear Fokker-Planck equation
    Zhang, DS
    Wei, GW
    Kouri, DJ
    Hoffman, DK
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 1197 - 1206
  • [7] Autocorrelation functions of nonlinear Fokker-Planck equations
    Frank, TD
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2004, 37 (02): : 139 - 142
  • [8] Curl forces and the nonlinear Fokker-Planck equation
    Wedemann, R. S.
    Plastino, A. R.
    Tsallis, C.
    [J]. PHYSICAL REVIEW E, 2016, 94 (06)
  • [9] Stabilization of Solutions of the Nonlinear Fokker-Planck Equation
    Kon'kov A.A.
    [J]. Journal of Mathematical Sciences, 2014, 197 (3) : 358 - 366
  • [10] Entropy production and nonlinear Fokker-Planck equations
    Casas, G. A.
    Nobre, F. D.
    Curado, E. M. F.
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):