Symmetric and non-symmetric quantum Capelli polynomials

被引:0
|
作者
Knop, F
机构
关键词
symmetric polynomials; Capelli identity; Macdonald polynomials; difference operators; Hecke algebras;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce families of symmetric and non-symmetric polynomials (the quantum Capelli polynomials) which depend on two parameters q and t, They are defined in terms of vanishing conditions, In the differential limit (q = t(alpha) and t --> 1) they are related to Capelli identities. It is shown that the quantum Capelli polynomials form an eigenbasis for certain q-difference operators. As a corollary, we obtain that the top homogeneous part is a symmetric/non-symmetric Macdonald polynomial. Furthermore, we study the vanishing and integrality properties of the quantum Capelli polynomials.
引用
收藏
页码:84 / 100
页数:17
相关论文
共 50 条
  • [1] Symmetric Jack polynomials from non-symmetric theory
    T. H. Baker
    P. J. Forrester
    [J]. Annals of Combinatorics, 1999, 3 (2-4) : 159 - 170
  • [2] The quantum Knizhnik-Zamolodchikov equation and non-symmetric Macdonald polynomials
    Kasatani, Masahiro
    Takeyama, Yoshihiro
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03): : 491 - 509
  • [3] The quantum Knizhnik-Zamolodchikov equation and non-symmetric Macdonald polynomials
    Kasatani, Masahiro
    Takeyama, Yoshihiro
    [J]. NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 249 - +
  • [4] Algebraic polynomials with random non-symmetric coefficients
    Farahmand, K.
    Stretch, C. T.
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (11) : 1305 - 1313
  • [5] Non-symmetric fast decreasing polynomials and applications
    Totik, Vilmos
    Varga, Tamas
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) : 378 - 390
  • [6] Knot polynomials in the first non-symmetric representation
    Anokhina, A.
    Mironov, A.
    Morozov, A.
    Morozov, And.
    [J]. NUCLEAR PHYSICS B, 2014, 882 : 171 - 194
  • [7] THE NON-SYMMETRIC WILSON POLYNOMIALS ARE THE BANNAI-ITO POLYNOMIALS
    Genest, Vincent X.
    Vinet, Luc
    Zhedanov, Alexei
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5217 - 5226
  • [8] Quantum features of non-symmetric geometries
    Wanas, MI
    Kahil, ME
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (12) : 1921 - 1929
  • [9] Symmetric and non-symmetric saturation
    Motyka, L.
    [J]. ACTA PHYSICA POLONICA B, 2006, 37 (12): : 3533 - 3551
  • [10] Quantum Features of Non-Symmetric Geometries
    M. I. Wanas
    M. E. Kahil
    [J]. General Relativity and Gravitation, 1999, 31 : 1921 - 1929