Shifted convolution sums for higher rank groups

被引:9
|
作者
Jiang, Yujiao [1 ]
Lu, Guangshi [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[2] Shandong Univ, Sch Math & Stat, Jinan 250100, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Shifted convolution sums; cusp forms; theta functions; 4TH;
D O I
10.1515/forum-2017-0269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some shifted convolution sums for higher rank groups. In particular, we establish an asymptotic formula for a GL(4) x GL(2) shifted convolution sum Sigma(n <= x)vertical bar lambda(f)(n)vertical bar(2)r(l)(n + b), where lambda(f) (n) are normalized Fourier coefficients of a Hecke holomorphic cusp form and r(1)(n) denotes the number of representations of n by the quadratic form x(1)( )(2)+ . . . + x(1)(2).
引用
收藏
页码:361 / 383
页数:23
相关论文
共 50 条
  • [1] Shifted convolution sums for SL(m)
    Hu, Guangwei
    Lu, Guangshi
    [J]. MANUSCRIPTA MATHEMATICA, 2020, 163 (3-4) : 375 - 394
  • [2] The spectral decomposition of shifted convolution sums
    Blomer, Valentin
    Harcos, Gergely
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 144 (02) : 321 - 339
  • [3] A SIEVE METHOD FOR SHIFTED CONVOLUTION SUMS
    Holowinsky, Roman
    [J]. DUKE MATHEMATICAL JOURNAL, 2009, 146 (03) : 401 - 448
  • [4] Bounds on shifted convolution sums for Hecke eigenforms
    Nordentoft, Asbjorn C.
    Petridis, Yiannis N.
    Risager, Morten S.
    [J]. RESEARCH IN NUMBER THEORY, 2022, 8 (02)
  • [5] Averages of shifted convolution sums for arithmetic functions
    Lou, Miao
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 123 - 134
  • [6] Shifted convolution sums motivated by string theory
    Fedosova, Ksenia
    Klinger-Logan, Kim
    [J]. JOURNAL OF NUMBER THEORY, 2024, 260 : 151 - 172
  • [7] Shifted convolution sums involving theta series
    Sun, Qingfeng
    [J]. RAMANUJAN JOURNAL, 2017, 44 (01): : 13 - 36
  • [8] Bounds on shifted convolution sums for Hecke eigenforms
    Asbjørn C. Nordentoft
    Yiannis N. Petridis
    Morten S. Risager
    [J]. Research in Number Theory, 2022, 8
  • [9] Shifted convolution sums involving theta series
    Qingfeng Sun
    [J]. The Ramanujan Journal, 2017, 44 : 13 - 36
  • [10] Averages of shifted convolution sums for arithmetic functions
    Miao Lou
    [J]. Frontiers of Mathematics in China, 2019, 14 : 123 - 134