Magnetic order-disorder transitions on a one-third-depleted square lattice

被引:5
|
作者
Guo, H. -M. [1 ,2 ]
Mendes-Santos, T. [2 ,3 ]
Pickett, W. E. [2 ]
Scalettar, R. T. [2 ]
机构
[1] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Univ Fed Rio de Janeiro, Inst Fis, Cx P 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
D-WAVE SUPERCONDUCTIVITY; MEAN-FIELD THEORY; HEISENBERG-MODEL; DIRAC FERMIONS; HUBBARD-MODEL; GROUND-STATE; CHAINS; CHARGE; PHASE;
D O I
10.1103/PhysRevB.95.045131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum Monte Carlo simulations are used to study the magnetic and transport properties of the Hubbard model, and its strong coupling Heisenberg limit, on a one-third-depleted square lattice. This is the geometry occupied, after charge ordering, by the spin-1/2Ni(1+) atoms in a single layer of the nickelate materials La4Ni3O8 and (predicted) La3Ni2O6. Our model is also a description of strained graphene, where a honeycomb lattice has bond strengths which are inequivalent. For the Heisenberg case, we determine the location of the quantum critical point (QCP) where there is an onset of long range antiferromagnetic order (LRAFO), and the magnitude of the order parameter, and then compare with results of spin wave theory. An ordered phase also exists when electrons are itinerant. In this case, the growth in the antiferromagnetic structure factor coincides with the transition from band insulator to metal in the absence of interactions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The Spin-1/2 Heisenberg Model on One-Third-Depleted Square Lattice: Exact Diagonalization Study
    Rubin, Pavel
    Pishtshev, Aleksandr
    Klopov, Mihhail
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (03)
  • [2] Order-disorder transitions in a vortex lattice
    Andrei, EY
    Xiao, ZL
    Henderson, W
    Paltiel, Y
    Zeldov, E
    Higgins, M
    Bhattacharya, S
    Shuk, P
    Greenblatt, M
    [J]. CONDENSED MATTER THEORIES, VOL 16, 2001, 16 : 241 - 252
  • [3] Order-Disorder Transitions in a Polar Vortex Lattice
    Zhou, Linming
    Dai, Cheng
    Meisenheimer, Peter
    Das, Sujit
    Wu, Yongjun
    Gomez-Ortiz, Fernando
    Garcia-Fernandez, Pablo
    Huang, Yuhui
    Junquera, Javier
    Chen, Long-Qing
    Ramesh, Ramamoorthy
    Hong, Zijian
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (22)
  • [4] THE INFLUENCE OF LATTICE VIBRATIONS ON THE ORDER-DISORDER TRANSITIONS OF ALLOYS
    BOOTH, C
    ROWLINSON, JS
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1955, 51 (04): : 463 - 467
  • [5] ORDER-DISORDER TRANSITIONS IN TETRAHEDRAL LATTICE POLYMER SYSTEMS
    KOLINSKI, A
    SKOLNICK, J
    YARIS, R
    [J]. MACROMOLECULES, 1986, 19 (10) : 2560 - 2567
  • [6] INFLUENCE OF VOLUME CHANGES AND LATTICE VIBRATIONS IN ORDER-DISORDER TRANSITIONS
    SAROLEA, L
    [J]. PHYSICA, 1953, 19 (06): : 615 - 626
  • [7] Order-disorder transitions in lattice gases with annealed reactive constraints
    Dudka, Maxym
    Benichou, Olivier
    Oshanin, Gleb
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [8] APPROXIMATE TREATMENT OF ORDER-DISORDER TRANSITIONS IN THE TRIANGULAR ISING LATTICE
    FOSDICK, LD
    JAMES, HM
    [J]. PHYSICAL REVIEW, 1952, 85 (04): : 714 - 714
  • [9] Order-disorder transitions in bilayer Heisenberg models on the triangular lattice
    Gu, Q
    Shen, JL
    [J]. PHYSICAL REVIEW B, 2000, 62 (05): : 3287 - 3291
  • [10] COURSE OF BIREFRINGENCE IN MAGNETIC AND STRUCTURAL ORDER-DISORDER TRANSITIONS
    JAHN, IR
    RENZ, D
    EGERT, G
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE KRISTALLGEOMETRIE KRISTALLPHYSIK KRISTALLCHEMIE, 1970, 132 (4-6): : 435 - &