Uniform Hyperbolicity for Szego Cocycles and Applications to Random CMV Matrices and the Ising Model

被引:10
|
作者
Damanik, David [1 ]
Fillman, Jake [1 ]
Lukic, Milivoje [1 ]
Yessen, William [1 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
ORTHOGONAL POLYNOMIALS; DIFFERENCE-EQUATIONS; ROTATION NUMBER; OPERATORS;
D O I
10.1093/imrn/rnu158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider products of the matrices associated with the Szego recursion from the theory of orthogonal polynomials on the unit circle and show that under suitable assumptions, their norms grow exponentially in the number of factors. In the language of dynamical systems, this result expresses a uniform hyperbolicity statement. We present two applications of this result. On the one hand, we identify explicitly the almost sure spectrum of extended CMV matrices with nonnegative random Verblunsky coefficients. On the other hand, we show that no Ising model in one dimension exhibits a phase transition. Also, in the case of dynamically generated interaction couplings, we describe a gap labeling theorem for the Lee-Yang zeros in the thermodynamic limit.
引用
收藏
页码:7110 / 7129
页数:20
相关论文
共 9 条
  • [1] A formula related to CMV matrices and Szego cocycles
    Wang, Fengpeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 304 - 316
  • [2] CHARACTERIZATIONS OF UNIFORM HYPERBOLICITY AND SPECTRA OF CMV MATRICES
    Damanik, David
    Fillman, Jake
    Lukic, Milivoje
    Yessen, William
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (04): : 1009 - 1023
  • [3] Monte Carlo study of the metamagnet Ising model in a random and uniform field
    Weizenmann, A.
    Godoy, M.
    de Arruda, A. S.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 645 - 647
  • [4] NUMERICAL RESULTS FOR THE RANDOM-FIELD ISING-MODEL AND THE DILUTE ANTIFERROMAGNETIC ISING-MODEL IN A UNIFORM-FIELD
    FERNANDEZ, JF
    PYTTE, E
    PHYSICAL REVIEW B, 1985, 31 (05): : 2886 - 2891
  • [5] A UNIFORM BOUND ON THE OPERATOR NORM OF SUB-GAUSSIAN RANDOM MATRICES AND ITS APPLICATIONS
    Franguridi, Grigory
    Moon, Hyungsik Roger
    ECONOMETRIC THEORY, 2022, 38 (06) : 1073 - 1091
  • [6] Random field Ising model in a uniform magnetic field: Ground states, pinned clusters and scaling laws
    Kumar, Manoj
    Banerjee, Varsha
    Puri, Sanjay
    EUROPEAN PHYSICAL JOURNAL E, 2017, 40 (11):
  • [7] Random field Ising model in a uniform magnetic field: Ground states, pinned clusters and scaling laws
    Manoj Kumar
    Varsha Banerjee
    Sanjay Puri
    The European Physical Journal E, 2017, 40
  • [8] METASTABILITY OF THE UNIFORM MAGNETIZATION IN 3-DIMENSIONAL RANDOM-FIELD ISING-MODEL SYSTEMS .1. FE0.7MG0.3CL2
    LEITAO, UA
    KLEEMANN, W
    FERREIRA, IB
    PHYSICAL REVIEW B, 1988, 38 (07): : 4765 - 4772
  • [9] METASTABILITY OF THE UNIFORM MAGNETIZATION IN 3-DIMENSIONAL RANDOM-FIELD ISING-MODEL SYSTEMS .2. FE0.47ZN0.53F2
    POLLAK, P
    KLEEMANN, W
    BELANGER, DP
    PHYSICAL REVIEW B, 1988, 38 (07): : 4773 - 4780