Origin and reduction of wakefields in photonic crystal accelerator cavities

被引:3
|
作者
Bauer, Carl A. [1 ]
Werner, Gregory R. [1 ]
Cary, John R. [1 ,2 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Tech X Corp, Boulder, CO 80303 USA
关键词
BREAKDOWN;
D O I
10.1103/PhysRevSTAB.17.051301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at frequencies near the top of bandgaps. The effect is explained quite generally by photonic band and perturbation theoretical arguments. Transverse wakefields resulting from this effect are observed (via simulation) in a 12 GHz hybrid dielectric PhC accelerating cavity based on a triangular lattice of sapphire rods. These wakefields are, on average, an order of magnitude higher than those in the 12 GHz waveguide-damped Compact Linear Collider copper cavities. The avoidance of translational symmetry (and, thus, the bandgap concept) can dramatically improve HOM damping in PhC-based structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Wakefields in photonic crystal cavities
    Werner, Gregory R.
    Bauer, Carl A.
    Cary, John R.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2009, 12 (07):
  • [2] Wakefields in photonic accelerator structures
    Naranjo, B.
    Andonian, G.
    Arab, E.
    Barber, S.
    Fitzmorris, K.
    Fukusawa, A.
    Hoang, P.
    Mahapatra, S.
    O'Shea, B.
    Valloni, A.
    Williams, O.
    Yang, C.
    Rosenzweig, J. B.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 600 - 605
  • [3] Measurement of wakefields in a 17 GHz photonic bandgap accelerator structure
    Marsh, Roark A.
    Shapiro, Michael A.
    Temkin, Richard J.
    Smirnova, Evgenya I.
    DeFordd, John F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 618 (1-3): : 16 - 21
  • [4] Photonic Crystal Cavities
    Noda, Susumu
    2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2016,
  • [5] Optimization of photonic crystal cavities
    Wang, Fengwen
    Sigmund, Ole
    17TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2017, 2017, : 39 - 40
  • [6] Recent progress on photonic band gap accelerator cavities
    Smith, DR
    Li, DR
    Vier, DC
    Kroll, N
    Schultz, S
    Wang, H
    ADVANCED ACCELERATOR CONCEPTS, 1997, (398): : 518 - 527
  • [7] Photonic crystal cavities embedded in photonic wire waveguides
    Zain, Ahmad. R. Md
    Chong, Harold. M. H.
    Gnan, M.
    Samarelli, A.
    Sorel, Marc
    De La Rue, Richard. M.
    PHOTONIC MATERIALS, DEVICES, AND APPLICATIONS II, 2007, 6593
  • [8] Electromechanically Tunable Photonic Crystal Cavities
    Midolo, L.
    van Veldhoven, P. J.
    Notzel, R.
    Dundar, M. A.
    Fiore, A.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [9] Photonic Crystal Nanobeam Cavities and Their Applications
    Loncar, M.
    Deotare, P. B.
    Frank, I. W.
    Zhang, Y.
    Conwill, A.
    Khan, M.
    McCutcheon, M. W.
    Quan, Q.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [10] Programmable photonic crystal nanobeam cavities
    Frank, Ian W.
    Deotare, Parag B.
    McCutcheon, Murray W.
    Loncar, Marko
    OPTICS EXPRESS, 2010, 18 (08): : 8705 - 8712