Scene Categorization by Hierarchical Clustering on Adaptive Spatio-Temporal Features

被引:0
|
作者
Sunny, Yedakula [1 ]
Saha, Pallavi [1 ]
Das, Apurba [1 ]
机构
[1] Tata Consultancy Serv, Comp Vis, IoT Innovat Lab, Mumbai, Maharashtra, India
关键词
Histogram of Flow (HoF); Fuzzy C-means; motion vector; decision tree; sigmoid;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The complex task of vision based analytics by computer gets more challenging when mutual motion between camera assembly and object of interest creates false motion features in the scene. This adds further complexity when adverse environmental conditions are handled along with scene understanding, scene captioning, object and activity recognition. The current work has proposed a novel hierarchical categorization based methodology to categorize scenes based on selected spatio-temporal features. The procedure of determination of feature hierarchy and the detailed description of step by step methodology have been provided along with comprehensive results.
引用
收藏
页码:298 / 303
页数:6
相关论文
共 50 条
  • [1] An adaptive method for clustering spatio-temporal events
    Li, Zhilin
    Liu, Qiliang
    Tang, Jianbo
    Deng, Min
    [J]. TRANSACTIONS IN GIS, 2018, 22 (01) : 323 - 347
  • [2] Empowering UAV scene perception by semantic spatio-temporal features
    Cavaliere, Danilo
    Saggese, Alessia
    Senatore, Sabrina
    Vento, Mario
    Loia, Vincenzo
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ENGINEERING (EE), 2018,
  • [3] Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 92 : 1 - 11
  • [4] A hierarchical spatio-temporal object knowledge graph model for dynamic scene representation
    Zhao, Xinke
    Cao, Yibing
    Wang, Jiahe
    Fan, Xinhua
    Chen, Minjie
    [J]. TRANSACTIONS IN GIS, 2023, 27 (07) : 1992 - 2016
  • [5] CONTENT ADAPTIVE VIDEO SUMMARIZATION USING SPATIO-TEMPORAL FEATURES
    Nam, Hyunwoo
    Yoo, Chang D.
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4003 - 4007
  • [6] Learning spatio-temporal context via hierarchical features for visual tracking
    Cao, Yi
    Ji, Hongbing
    Zhang, Wenbo
    Xue, Fei
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 66 : 50 - 65
  • [7] Online spatio-temporal action detection with adaptive sampling and hierarchical modulation
    Su, Shaowen
    Gan, Minggang
    [J]. Multimedia Systems, 2024, 30 (06)
  • [8] Face Clustering in Videos : GMM-based Hierarchical Clustering using Spatio-temporal Data
    Kayal, Subhradeep
    [J]. 2013 13TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2013, : 272 - 278
  • [9] Spatio-temporal clustering of epileptic ECOG
    Hegde, Anant
    Erdogmus, Deniz
    Principe, Jose C.
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 4199 - 4202
  • [10] Adaptive Pooling of the Most Relevant Spatio-Temporal Features for Action Recognition
    Ahmed, Faisal
    Paul, Padma Polash
    Gavrilova, Marina
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2016, : 177 - 180