Are there more almost separable partitions than separable partitions?

被引:0
|
作者
Chang, Fei-Huang [1 ]
Chen, Hong-Bin [2 ]
Hwang, Frank K. [3 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math & Sci, New Taipei, Taiwan
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30050, Taiwan
关键词
Partition; Separable partition; Optimal partition; Almost separable partition; NUMBER; SET;
D O I
10.1007/s10878-012-9536-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A partition of a set of n points in d-dimensional space into p parts is called an (almost) separable partition if the convex hulls formed by the parts are (almost) pairwise disjoint. These two partition classes are the most encountered ones in clustering and other partition problems for high-dimensional points and their usefulness depends critically on the issue whether their numbers are small. The problem of bounding separable partitions has been well studied in the literature (Alon and Onn in Discrete Appl. Math. 91:39-51, 1999; Barnes et al. in Math. Program. 54:69-86, 1992; Harding in Proc. Edinb. Math. Soc. 15:285-289, 1967; Hwang et al. in SIAM J. Optim. 10:70-81, 1999; Hwang and Rothblum in J. Comb. Optim. 21:423-433, 2011a). In this paper, we prove that for da parts per thousand currency sign2 or pa parts per thousand currency sign2, the maximum number of almost separable partitions is equal to the maximum number of separable partitions.
引用
收藏
页码:567 / 573
页数:7
相关论文
共 50 条
  • [1] Are there more almost separable partitions than separable partitions?
    Fei-Huang Chang
    Hong-Bin Chen
    Frank K. Hwang
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 567 - 573
  • [2] Separable partitions
    Alon, N
    Onn, S
    [J]. DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 39 - 51
  • [3] On the number of separable partitions
    Hwang, Frank K.
    Rothblum, Uriel G.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 21 (04) : 423 - 433
  • [4] On the number of separable partitions
    Frank K. Hwang
    Uriel G. Rothblum
    [J]. Journal of Combinatorial Optimization, 2011, 21 : 423 - 433
  • [5] Separable d-Permutations and Guillotine Partitions
    Asinowski, Andrei
    Mansour, Toufik
    [J]. ANNALS OF COMBINATORICS, 2010, 14 (01) : 17 - 43
  • [6] Separable d-Permutations and Guillotine Partitions
    Andrei Asinowski
    Toufik Mansour
    [J]. Annals of Combinatorics, 2010, 14 : 17 - 43
  • [7] Computing desirable partitions in additively separable hedonic games
    Aziz, Hans
    Brandt, Felix
    Seedig, Hans Georg
    [J]. ARTIFICIAL INTELLIGENCE, 2013, 195 : 316 - 334
  • [8] Monotone partitions and almost partitions
    Bonanzinga, Maddalena
    Cammaroto, Filippo
    van Mill, Jan
    Pansera, Bruno A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2014, 178 : 411 - 416
  • [9] Sphere-separable partitions of multi-parameter elements
    Golanya, Boaz
    Hwang, Frank K.
    Rothbluma, Uriel G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (06) : 838 - 845