On the effective behavior of viscoelastic composites in three dimensions

被引:32
|
作者
Cruz-Gonzalez, O. L. [1 ]
Rodriguez-Ramos, R. [2 ,3 ]
Otero, J. A. [4 ]
Ramirez-Torres, A. [5 ]
Penta, R. [6 ]
Lebon, F. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LMA UMR Marseille, Marseille, France
[2] Univ La Habana, Fac Matemat & Computac, Havana 10400, Cuba
[3] Tecnol Monterrey, Escuela Ingn & Ciencias, Campus Puebla Atlixcayotl 5718, Puebla 72453, Mexico
[4] Tecnol Monterrey, Escuela Ingn & Ciencias, Campus Estado Mexico, Atizapan De Zaragoza 52926, Mexico
[5] Politecn Torino, Dipartimento Sci Matemat GL Lagrange, I-10129 Turin, Italy
[6] Univ Glasgow, Sch Math & Stat, Math & Stat Bldg,Univ Pl, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Viscoelasticity; Composite materials; Fibrous and inclusion reinforcement; Asymptotic homogenization method; Computational study; ASYMPTOTIC HOMOGENIZATION; APPROXIMATE; MODELS; MEDIA;
D O I
10.1016/j.ijengsci.2020.103377
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We address the calculation of the effective properties of non-aging linear viscoelastic composite materials. This is done by solving the microscale periodic local problems obtained via the Asymptotic Homogenization Method (AHM) by means of finite element three-dimensional simulations. The work comprises the investigation of the effective creep and relaxation behavior for a variety of fiber and inclusion reinforced structures (e.g. polymeric matrix composites). As starting point, we consider the elastic-viscoelastic correspondence principle and the Laplace-Carson transform. Then, a classical asymptotic homogenization approach for composites with discontinuous material properties and perfect contact at the interface between the constituents is performed. In particular, we reach to the stress jump conditions from local problems and obtain the corresponding interface loads. Furthermore, we solve numerically the local problems in the Laplace-Carson domain, and compute the effective coefficients. Moreover, the inversion to the original temporal space is also carried out. Finally, we compare our results with those obtained from different homogenization approaches, such as the Finite-Volume Direct Averaging Micromechanics (FVDAM) and the Locally Exact Homogenization Theory (LEHT). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Effective viscoelastic behavior of particulate polymer composites at finite concentration
    Li Dan
    Hu Geng-kai
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (03) : 297 - 307
  • [2] Effective viscoelastic behavior of particulate polymer composites at finite concentration
    Dan Li
    Geng-kai Hu
    Applied Mathematics and Mechanics, 2007, 28 : 297 - 307
  • [3] Effective viscoelastic behavior of polymer composites with regular periodic microstructures
    Pallicity, Tarkes Dora
    Boehlke, Thomas
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 216 : 167 - 181
  • [4] Effective viscoelastic behavior of particulate polymer composites at finite concentration
    李丹
    胡更开
    Applied Mathematics and Mechanics(English Edition), 2007, (03) : 297 - 307
  • [5] Effective behavior of linear viscoelastic composites: A time-integration approach
    Lahellec, Noel
    Suquet, Pierre
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (02) : 507 - 529
  • [6] Effective behavior of long and short fiber-reinforced viscoelastic composites
    Cruz-Gonzalez, O. L.
    Ramirez-Torres, A.
    Rodriguez-Ramos, R.
    Otero, J. A.
    Penta, R.
    Lebon, F.
    APPLICATIONS IN ENGINEERING SCIENCE, 2021, 6
  • [7] Effective viscoelastic behavior of short fibers composites using virtual DMA experiments
    Boris Burgarella
    Aurelien Maurel-Pantel
    Noël Lahellec
    Jean-Luc Bouvard
    Noëlle Billon
    Hervé Moulinec
    Frédéric Lebon
    Mechanics of Time-Dependent Materials, 2019, 23 : 337 - 360
  • [8] Effective viscoelastic behavior of short fibers composites using virtual DMA experiments
    Burgarella, Boris
    Maurel-Pantel, Aurelien
    Lahellec, Noel
    Bouvard, Jean-Luc
    Billon, Noelle
    Moulinec, Herve
    Lebon, Frederic
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2019, 23 (03) : 337 - 360
  • [9] Effective Governing Equations for Viscoelastic Composites
    Miller, Laura
    Ramirez-Torres, Ariel
    Rodriguez-Ramos, Reinaldo
    Penta, Raimondo
    MATERIALS, 2023, 16 (14)
  • [10] A three-dimensional micromechanical model to predict the viscoelastic behavior of woven composites
    Upadhyaya, Priyank
    Upadhyay, C. S.
    COMPOSITE STRUCTURES, 2011, 93 (11) : 2733 - 2739